392 resultados para Arrhenius expressions
Resumo:
We build on the formulation developed in S. Sridhar and N. K. Singh J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients alpha(il) and eta(iml) are derived. We prove that when the velocity field is nonhelical, the transport coefficient alpha(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X-3 and time tau; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Radler, M. Rheinhardt, and P. J. Kapyla Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor eta(ij) (tau). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.
Resumo:
Dipolar systems, both liquids and solids, constitute a class of naturally abundant systems that are important in all branches of natural science. The study of orientational relaxation provides a powerful method to understand the microscopic properties of these systems and, fortunately, there are many experimental tools to study orientational relaxation in the condensed phases. However, even after many years of intense research, our understanding of orientational relaxation in dipolar systems has remained largely imperfect. A major hurdle towards achieving a comprehensive understanding is the long range and complex nature of dipolar interactions which also made reliable theoretical study extremely difficult. These difficulties have led to the development of continuum model based theories, which although they provide simple, elegant expressions for quantities of interest, are mostly unsatisfactory as they totally neglect the molecularity of inter-molecular interactions. The situation has improved in recent years because of renewed studies, led by computer simulations. In this review, we shall address some of the recent advances, with emphasis on the work done in our laboratory at Bangalore. The reasons for the failure of the continuum model, as revealed by the recent Brownian dynamics simulations of the dipolar lattice, are discussed. The main reason is that the continuum model predicts too fast a decay of the torque-torque correlation function. On the other hand, a perturbative calculation, based on Zwanzig's projection operator technique, provides a fairly satisfactory description of the single particle orientational dynamics for not too strongly polar dipolar systems. A recently developed molecular hydrodynamic theory that properly includes the effects of intermolecular orientational pair correlations provides an even better description of the single-particle orientational dynamics. We also discuss the rank dependence of the dielectric friction. The other topics reviewed here includes dielectric relaxation and solvation dynamics, as they are intimately connected with orientational relaxation. Recent molecular dynamics simulations of the dipolar lattice are also discussed. The main theme of the present review is to understand the effects of intermolecular interactions on orientational relaxation. The presence of strong orientational pair correlation leads to a strong coupling between the single particle and the collective dynamics. This coupling can lead to rich dynamical properties, some of which are detailed here, while a major part remains yet unexplored.
Resumo:
The reactivation kinetics of passivated Mg acceptors in hydrogenated InP during unbiased annealing of a Schottky diode is reported. The reactivation is found to slow down gradually with annealing time and this phenomenon is attributed to substantial retrapping of H at the acceptor sites. It is found from the concentration profiles and the kinetics data that the reactivation is most likely limited by H2 molecule formation processes for longer annealing times; for shorter annealing times, contributions from in-diffusion of H also become significant. The diffusion of H during the initial period follows an Arrhenius relation with an activation energy for the effective diffusion coefficient of 1.13±0.10 eV. In the H2 formation regime, the reactivation is thermally activated with an activation energy for the annealing parameter of 1.71±0.10 eV. The H2 formation-limited regime of reactivation occurs sooner as the annealing temperature is increased.
Resumo:
Analytical expressions which include depletion layer effects on low-injection carrier relaxation are being presented for the first time here. Starting from the continuity equation for the minority carriers, we derive expressions for the output signal pertinent to time-resolved microwave and luminescence experiments. These are valid for the time domain that usually overlaps with the time scales of surface processes, such as charge transfer and trapping. Apart from the usual pulse form of illumination, theoretical expressions pertaining to other forms of illumination such as switch-on and switch-off transient modes, a periodic mode, and a steady state and their various inter-relationships are derived here. The expressions obtained are seen to be generalizations of existing flat-band low-injection results in the Limit of early or initial band bendings. The importance of the depletion layer as an experimental parameter is clearly seen in the limit of larger band bendings wherein it is shown, unlike the flat-band case, to exhibit pure exponential forms of carrier relaxation. Our results are consistent with the main conclusions of the numerical and experimental work published recently. Furthermore, this work provides the actual functional relationships between the applied potential and observed carrier decay. This should enable one to extract the surface kinetic parameters, after deciding on the dominant mode of carrier relaxation at the interface, whether charge transfer or trapping, by studying the potential dependence of the fate of relaxation.
Resumo:
Stochastic structural systems having a stochastic distribution of material properties and stochastic external loadings in space are analysed when a crack of deterministic size is present. The material properties and external loadings are considered to constitute independent, two-dimensional, univariate, real, homogeneous stochastic fields. The stochastic fields are characterized by their means, variances, autocorrelation functions or the equivalent power spectral density functions, and scale fluctuations. The Young's modulus and Poisson's ratio are treated to be stochastic quantities. The external loading is treated to be a stochastic field in space. The energy release rate is derived using the method of virtual crack extension. The deterministic relationship is derived to represent the sensitivities of energy release rate with respect to both virtual crack extension and real system parameter fluctuations. Taylor series expansion is used and truncation is made to the first order. This leads to the determination of second-order properties of the output quantities to the first order. Using the linear perturbations about the mean values of the output quantities, the statistical information about the energy release rates, SIF and crack opening displacements are obtained. Both plane stress and plane strain cases are considered. The general expressions for the SIF in all the three fracture modes are derived and a more detailed analysis is conducted for a mode I situation. A numerical example is given.
Resumo:
Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is-first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.
Resumo:
Thermal oxidative polymerization of alpha-methylstyrene (AMS) has been studied at various temperatures(45-70 degrees C) and pressures (50-400 psi). Due to its high electron dense double bond, it undergoes thermal oxidative polymerization even at low temperatures fairly easily. The major products are poly(alpha-methylstyrene peroxide) (PMSP), and its decomposition products are acetophenone and formaldehyde. Above 45 degrees C the rate of polymerization increases sharply at a particular instant showing an ''autoacceleration'' with the formation of a knee point. The ''autoacceleration'' is supported from the fact that the plot, of R-p vs T shows a rapid rise, and the plot of ln R-p vs 1/T is non-Arrhenius. The occurrence of autoacceleration is explained on the basis of acetophenone-induced cleavage of PMSP during polymerization, generating more initiating alkoxy radicals, which subsequently leads to the rapid rise in the rate of polymerization. The mechanism of autoacceleration is supported by the change in. order, activation energy, and activation volume before and after the knee point.
Resumo:
The review is concerned with models that analyze transport:processes that occur during microwave heating. Early models on microwave. heating used Lambert's law to describe the microwave power absorption. Over the last decade, models for transport processes have been developed with the microwave power derived from Maxwell's equations. Those models, primarily based on plane waves, have been used for analyzing microwave heating of solids, liquids, emulsions, microwave thawing and drying. The models illustrate phenomena such a resonances, hot spots, edge and runaway heating. The literature on microwave sintering, susceptor heating and microwave assisted synthesis is largely experimental in nature and only key issues are highlighted. To fully appreciate the models for microwave heating, a section on the theory of electromagnetic wave propagation is included, where expressions for the electric field in dielectric slabs and cylinders are presented.
Resumo:
The reactivation kinetics of passivated boron accepters in hydrogenated silicon during zero bias annealing in the temperature range of 65-130 degrees C are reported, For large annealing times and high annealing temperatures, the reactivation process follows second-order kinetics and is rate limited by a thermally activated <(H)over tilde (2)> complex formation process, For short annealing times and low annealing temperatures, the reactivation rate is found to be larger than that due to <(H)over tilde (2)> complex formation alone. We conclude that the faster reactivation is caused by the diffusion of the liberated hydrogen atoms into the bulk as well as <(H)over tilde (2)> complex formation. The effective diffusion coefficient of hydrogen is measured and found to obey the Arrhenius relation with an activation energy (1.41 +/- 0.1) eV. (C) 1997 American Institute of Physics.
Resumo:
The relations between partial and integral properties of ternary solutions along composition trajectories suggested by Kohler, Colinet and Jacob, and along an arbitrary path are derived. The chemical potentials of the components are related to the slope of integral free energy by expressions involving the binary compositions generated by the intersections of the composition trajectory with the sides of the ternary triangle. Only along the Kohler composition trajectory it is possible to derive the integral free energy from the variation of the chemical potential of a single component with composition or vice versa. Along all other paths the differential of the integral free energy is related to two chemical potentials. The Gibbs-Duhem integration proposed by Darken for the ternary system uses the Kohler isogram. The relative merits of different limits for integration are discussed.
Resumo:
This paper deals with the system oriented analysis, design, modeling, and implementation of active clamp HF link three phase converter. The main advantage of the topology is reduced size, weight, and cost of the isolation transformer. However, violation of basic power conversion rules due to presence of the leakage inductance in the HF transformer causes over voltage stresses across the cycloconverter devices. It makes use of the snubber circuit necessary in such topologies. The conventional RCD snubbers are dissipative in nature and hence inefficient. The efficiency of the system is greatly improved by using regenerative snubber or active clamp circuit. It consists of an active switching device with an anti-parallel diode and one capacitor to absorb the energy stored in the leakage inductance of the isolation transformer and to regenerate the same without affecting circuit performance. The turn on instant and duration of the active device are selected such that it requires simple commutation requirements. The time domain expressions for circuit dynamics, design criteria of the snubber capacitor with two conflicting constrains (over voltage stress across the devices and the resonating current duration), the simulation results based on generalized circuit model and the experimental results based on laboratory prototype are presented.
Resumo:
The methane-hydrogen gas equilibration technique has been used to measure the chemical potential of carbon associated with two three-phase fields of the system U-W-C in the temperature range 973 to 1173 K. By combining the values of the chemical potential of carbon in the three-phase fields UC + W + UWC1.75 and UC + UWC1.75 + UWC2 Obtained in this study with the data on the Gibbs energy of formation of UC available in the literature, expressions for the Gibbs energies of formation of the two ternary carbides were derived: Delta(f)G degrees [UWC1.75] = -131, 600 - 300 T (+/-8000) J mol(-1) Delta(f)G degrees [UWC2] = -144, 800 - 32.0 T (+/- 10,000) J mol(-1) Although estimates of Gibbs energies of formation of the two ternary carbides TSWC1.75 and UWC2 have been reported, there have been no previous experimental determinations of thermodynamic properties of these compounds.
Resumo:
Sufficiently long molecular dynamics simulations have been carried out on spherical monatomic sorbates in NaY zeolite, interacting via simple Lennard-Jones potentials, to investigate the dependence of the levitation effect on the temperature. Simulations carried out in the range 100-300 K suggest that the anomalous peak in the diffusion coefficient (observed when the levitation parameter, gamma, is near unity) decreases in intensity with increase in temperature. The rate of cage-to-cage migrations also exhibits a similar trend. The activation energy obtained from Arrhenius plots is found to exhibit a minimum when the diffusion coefficient is a maximum, corresponding to the gamma approximate to 1 sorbate diameter. In the linear or normal regime, the activation energy increases with increase in sorbate diameter until it shows a sharp decrease in the anomalous regime. Locations and energies of the adsorption sites and their dependence on the sorbate size gives interesting insight into the nature of the underlying potential-energy surface and further explain the observed trend in the activation energy with sorbate size. Cage residence times, tau(c), show little or no change with temperature for the sorbate with diameter corresponding to gamma approximate to 1, whereas there is a significant decrease in tau(c) with increase in temperature for sorbates in the linear regime. The implications of the present study for the separation of mixtures of sorbates are discussed.
Resumo:
Thermodynamic constraints on component chemical potentials in three-phase fields introduced by the various isograms suggested in the literature are derived for a ternary system containing compounds. When compositions of two compounds lie on an isogram, it is associated with specific characteristics which can be used to obtain further understanding of the interplay of thermodynamic factors that determine phase equilibria. When two compounds are shared by adjacent three-phase fields, the constraints are dictated by binary compositions generated by the intersection of a line passing through the shared compounds with the sides of the ternary triangle. Generalized expressions for an arbitrary line through the triangle are presented. These are consistent with special relations obtained along Kohler, Colinet and Jacob isograms. Five axioms are introduced and proved. They provide valuable tools for checking consistency of thermodynamic measurements and for deriving thermodynamic properties from phase diagrams. (C) 1997 Elsevier Science S.A.
Resumo:
The aim of logic synthesis is to produce circuits which satisfy the given boolean function while meeting timing constraints and requiring the minimum silicon area. Logic synthesis involves two steps namely logic decomposition and technology mapping. Existing methods treat the two as separate operation. The traditional approach is to minimize the number of literals without considering the target technology during the decomposition phase. The decomposed expressions are then mapped on to the target technology to optimize the area, Timing optimization is carried out subsequently, A new approach which treats logic decomposition and technology maping as a single operation is presented. The logic decomposition is based on the parameters of the target technology. The area and timing optimization is carried out during logic decomposition phase itself. Results using MCNC circuits are presented to show that this method produces circuits which are 38% faster while requiring 14% increase in area.