212 resultados para Area Functional


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS2 with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS2 supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS2. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing and fabricating hybrid systems with a visible light active semiconductor as one of its components is an important research area for the development of highly efficient photocatalysts. Herein, we report visible-light driven photocatalytic activity of graphene oxide (GO) and controllably reduced GO (rGO) modified Ag3PO4 composites fabricated by an in situ method. Concentration of graphene derivatives in GO/rGO-Ag3PO4 composites was in the range of 0.13-0.52 wt% which is very minute compared to those reported previously. The optimal concentration of GO in Ag3PO4 with a kinetics (k = 1.23 +/- 0.04 min(-1)) for the degradation of rhodamine B is 0.26 wt%. GO-Ag3PO4 photocatalysts display an improved catalytic activity compared with pristine and rGOs modified Ag3PO4. In line with this, GO/rGO-Ag3PO4 composites show improved photocatalytic activity for the degradation of 2-chlorophenol compared with Degussa P-25. Our experiments with GO reduced to different extents show that, rGO with more polar functional groups exhibits a higher photocatalytic efficiency. The photocatalytic activity in the presence of different scavengers reveals that holes and O-2(-center dot) reactive species play major roles in the degradation phenomenon. In view of our experimental results and reported theoretical studies, a change in conduction band energy level and variation in the contribution of different charge orbitals (C 2p and O 2p) to the conduction band in the composite favours electron flow from graphene derivatives to the semiconductor, enhancing its photocatalytic response.