226 resultados para Analgesics non-narcotic
Resumo:
Non-Boussinesq conjugate natural convection in a vertical annulus with a centrally located vertical heat generating rod is studied numerically, taking into account variable transport properties. Results are presented for maximum solid temperatures, average Nusselt numbers and average pressure. In general, the Boussinesq model predicts higher temperatures in the solid and lower average Nusselt numbers on the inner and outer boundaries. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The nonsimilar non-Darcy mixed convection flow about a heated horizontal surface in a saturated porous medium has been studied when the surface temperature is a power function of distance (Tw = T∞ ± Axλ). The analysis is performed for the cases of parallel and stagnation flows with favourable induced pressure gradient. The partial differential equations governing the flow have been solved numerically using the Keller box method. The heat transfer is enhanced due to the buoyancy parameter and wall temperature, but the non-Darcy parameter reduces it. For non-Darcy flow, the similarity solution exists only for the case of parallel flow.
Resumo:
The analysis of steady laminar forced convection boundary layer of power-law non-Newtonian fluids on a continuously moving cylinder with the surface maintained at a uniform temperature or uniform heat flux is presented. Of interest were the effects of power-law viscosity index, transverse curvature, generalized Prandtl number and streamwise coordinate on the local Nusselt number as well as on the velocity and temperature profiles. The two thermal boundary conditions yield quite similar results. Comparison of the calculated results with available series expansion solutions for a Newtonian fluid shows a very good performance of the present numerical procedure.
Resumo:
In β-AgI and β-Ag3SI the ionic conductivity has been measured at frequencies from 1kHz to 2.6 GHz and from 10 MHz to 10 THz, respectively. In both phases we observe a conductivity increase of some orders of magnitude, due to localized types of motion of the silver ions. In β-AgI the increase is found at about 1 MHz and reflects cooperative back-and-forth hopping processes between adjacent tetrahedral sites. In β-Ag3SI the phenomenon occurs at microwave frequencies. Here it is caused by a non-hopping, non-periodic localized Ag+-motion within shallow potentials.
Resumo:
Non-linear resistors having current-limiting capabilities at lower field strengths, and voltage-limiting characteristics (varistors) at higher field strengths, were prepared from sintered polycrystalline ceramics of (Ba0.6Sr0.4)(Ti0.97Zr0.03)O3+0.3 at % La, and reannealed after painting with low-melting mixtures of Bi2O3 + PbO +B2O3. These types of non-linear characteristics were found to depend upon the non-uniform diffusion of lead and the consequent distribution of Curie points (T c) in these perovskites, resulting in diffuse phase transitions. Tunnelling of electrons across the asymmetric barrier at tetragonak-cubic interfaces changes to tunnelling across the symmetric barrier as the cubic phase is fully stabilized through Joule heating at high field strengths. Therefore the current-limiting characteristics switch over to voltage-limiting behaviour because tunnelling to acceptor-type mid-bandgap states gives way to band-to-band tunnelling.
Resumo:
Molecular dynamics simulations on Xe in NaY and Ar in NaCaA zeolite are reported. Rates of cage-to-cage crossovers in the two zeolites exhibit trends which are contrary to that expected from geometrical considerations. The results suggest the important role of the sorbate-zeolite interactions in determining the molecular sieve properties of zeolites for small sized sorbates. The results are explained in terms of the barrier height for cage-to-cage crossover in the two zeolites.
Resumo:
A new finite element method is developed to analyse non-conservative structures with more than one parameter behaving in a stochastic manner. As a generalization, this paper treats the subsequent non-self-adjoint random eigenvalue problem that arises when the material property values of the non-conservative structural system have stochastic fluctuations resulting from manufacturing and measurement errors. The free vibration problems of stochastic Beck's column and stochastic Leipholz column whose Young's modulus and mass density are distributed stochastically are considered. The stochastic finite element method that is developed, is implemented to arrive at a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that, through this formulation, the finite element discretization need not be dependent on the characteristics of stochastic processes of the fluctuations in material property value.
Resumo:
The non-Darcy mixed convection flow on a vertical cylinder embedded in a saturated porous medium has been studied taking into account the effect of thermal dispersion. Both forced flow and buoyancy force dominated cases with constant wall temperature condition have been considered. The governing partial differential equations have been solved numerically using the Keller box method. The results are presented for the buoyancy parameter which cover the entire regime of mixed convection flow ranging from pure forced convection to pure free convection. The effect of thermal dispersion is found to be more pronounced on the heat transfer than on the skin friction and it enhances the heat transfer but reduces the skin friction.
Resumo:
An asymptotically correct analysis is developed for Macro Fiber Composite unit cell using Variational Asymptotic Method (VAM). VAM splits the 3D nonlinear problem into two parts: A 1D nonlinear problem along the length of the fiber and a linear 2D cross-sectional problem. Closed form solutions are obtained for the 2D problem which are in terms of 1D parameters.
Resumo:
Non-polar a-plane GaN films were grown on an r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The effect of growth temperature on structural, morphological and optical properties has been studied. The growth of non-polar a-plane (1 1 - 2 0) orientation of the GaN epilayers were confirmed by high resolution X-ray diffraction (HRXRD) study. The X-ray rocking curve (XRC) full width at half maximum of the (1 1 - 2 0) reflection shows in-plane anisotropic behavior and found to decrease with increase in growth temperature. The atomic force micrograph (AFM) shows island-like growth for the film grown at a lower temperature. Surface roughness has been decreased with increase in growth temperature. Room temperature photoluminescence shows near band edge emission at 3.434-3.442 eV. The film grown at 800 degrees C shows emission at 2.2 eV, which is attributed to yellow luminescence along with near band edge emission. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present an explicit solution of the problem of two coupled spin-1/2 impurities, interacting with a band of conduction electrons. We obtain an exact effective bosonized Hamiltonian, which is then treated by two different methods (low-energy theory and mean-field approach). Scale invariance is explicitly shown at the quantum critical point. The staggered susceptibility behaves like ln(T(K)/T) at low T, whereas the magnetic susceptibility and [S1.S2] are well behaved at the transition. The divergence of C(T)/T when approaching the transition point is also studied. The non-Fermi-liquid (actually marginal-Fermi-liquid) critical point is shown to arise because of the existence of anomalous correlations, which lead to degeneracies between bosonic and fermionic states of the system. The methods developed in this paper are of interest for studying more physically relevant models, for instance, for high-T(c) cuprates.