259 resultados para ANGLE GRAIN-BOUNDARIES
Resumo:
This paper presents an efficient approach to the modeling and classification of vehicles using the magnetic signature of the vehicle. A database was created using the magnetic signature collected over a wide range of vehicles(cars). A sensor dependent approach called as Magnetic Field Angle Model is proposed for modeling the obtained magnetic signature. Based on the data model, we present a novel method to extract the feature vector from the magnetic signature. In the classification of vehicles, a linear support vector machine configuration is used to classify the vehicles based on the obtained feature vectors.
Resumo:
Grain boundary dynamics and grain growth play a pivotal role in the fabrication of functional polycrystalline materials. However, not much is known about the delicate interplay between various microscopic processes that drive grain boundary motion which eventually culminates in the desired grain morphology. Colloidal systems are ideally suited to bridge the gap between the microscopic and macroscopic processes underlying grain growth, since their dynamics can be followed in real space and real time with single-particle resolution. The present review aims at highlighting contributions from colloid experiments that have led to a holistic understanding of grain growth in polycrystalline materials.
Resumo:
A systematic study of the evolution of the microstructure and crystallographic texture during free end torsion of a single phase magnesium alloy Mg-3Al-0.3Mn (AM30) was carried out. The torsion tests were done at a temperature of 250 degrees C to different strain levels in order to examine the progressive evolution of the microstructure and texture. A detailed microstructural analysis was performed using the electron back-scattered diffraction technique. The observed microstructural features indicated the occurrence of continuous dynamic recovery and recrystallization, starting with the formation of subgrains and ending with recrystallized grains with high angle boundaries. Texture and microstructure evolution were analysed by decoupling the effects of imposed shear and of dynamic recrystallization. Microstructure was partitioned to separate the deformed grains from the recovered/recrystallized grains. The texture of the deformed part could be reproduced by viscoplastic self-consistent polycrystal simulations. Recovered/recrystallized grains were formed as a result of rotation of these grains so as to reach a low plastic energy state. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Neutron powder diffraction study of Ba(Ti1-xZrx)O-3 at close composition intervals has revealed coexistence of ferroelectric phases: orthorhombic (Amm2) + tetragonal (P4mm) for 0.02 <= x <= 0.05 and rhombohedral (R3m) + orthorhombic (Amm2) for 0.07 <= x < 0.09. These compositions exhibit relatively enhanced piezoelectric properties as compared to their single phase counterparts outside this composition region, confirming the polymorphic phase boundary nature of the phase coexistence regions. (C) 2013 AIP Publishing LLC.
Resumo:
In the present work, we experimentally study and demarcate the stall flutter boundaries of a NACA 0012 airfoil at low Reynolds numbers (Re similar to 10(4)) by measuring the forces and flow fields around the airfoil when it is forced to oscillate. The airfoil is placed at large mean angle of attack (alpha(m)), and is forced to undergo small amplitude pitch oscillations, the amplitude (Delta alpha) and frequency (f) of which are systematically varied. The unsteady loads on the oscillating airfoil are directly measured, and are used to calculate the energy transfer to the airfoil from the flow. These measurements indicate that for large mean angles of attack of the airfoil (alpha(m)), there is positive energy transfer to the airfoil over a range of reduced frequencies (k=pi fc/U), indicating that there is a possibility of airfoil excitation or stall flutter even at these low Re (c=chord length). Outside this range of reduced frequencies, the energy transfer is negative and under these conditions the oscillations would be damped. Particle Image Velocimetry (PIV) measurements of the flow around the oscillating airfoil show that the shear layer separates from the leading edge and forms a leading edge vortex, although it is not very clear and distinct due to the low oscillation amplitudes. On the other hand, the shear layer formed after separation is found to clearly move periodically away from the airfoil suction surface and towards it with a phase lag to the airfoil oscillations. The phase of the shear layer motion with respect to the airfoil motions shows a clear difference between the exciting and the damping case.
Resumo:
The microstructure and mechanical properties of nanocrystalline Pd films prepared by magnetron sputtering have been investigated as a function of strain. The films were deposited onto polyimide substrates and tested in tensile mode. In order to follow the deformation processes in the material, several samples were strained to defined straining states, up to a maximum engineering strain of 10%, and prepared for post-mortem analysis. The nanocrystalline structure was investigated by quantitative automated crystal orientation mapping (ACOM) in a transmission electron microscope (TEM), identifying grain growth and twinning/detwinning resulting from dislocation activity as two of the mechanisms contributing to the macroscopic deformation. Depending on the initial twin density, the samples behaved differently. For low initial twin densities, an increasing twin density was found during straining. On the other hand, starting from a higher twin density, the twins were depleted with increasing strain. The findings from ACOM-TEM were confirmed by results from molecular dynamics (MD) simulations and from conventional and in-situ synchrotron X-ray diffraction (CXRD, SXRD) experiments.
Resumo:
This paper aims at extending the universal erosive burning law developed by two of the present authors from axi-symmetric internally burning grains to partly symmetric burning grains. This extension revolves around three dimensional flow calculations inside highly loaded grain geometry and benefiting from an observation that the flow gradients normal to the surface in such geometries have a smooth behavior along the perimeter of the grain. These are used to help identify the diameter that gives the same perimeter the characteristic dimension rather than a mean hydraulic diameter chosen earlier. The predictions of highly loaded grains from the newly chosen dimension in the erosive burning law show better comparison with measured pressure-time curves while those with mean hydraulic diameter definitely over-predict the pressures. (c) 2013 IAA. Published by Elsevier Ltd. All rights reserved.
Resumo:
The bio-corrosion response of ultrafine-grained commercially pure titanium processed by different routes of equal-channel angular pressing has been studied in simulated body fluid. The results indicate that the samples processed through route B-c that involved rotation of the workpiece by 90 deg in the same sense between each pass exhibited higher corrosion resistance compared to the ones processed by other routes of equal-channel angular pressing, as well as the coarse-grained sample. For a similar grain size, the higher corrosion resistance of the samples exhibiting off-basal texture compared to shear texture indicates the major role of texture in corrosion behavior. It is postulated that an optimum combination of microstructure and crystallographic texture can lead to high strength and excellent corrosion resistance.
Resumo:
In this brief, variable structure systems theory based guidance laws, to intercept maneuvering targets at a desired impact angle, are presented. Choosing the missile's lateral acceleration (latax) to enforce sliding mode, which is the principal operating mode of variable structure systems, on a switching surface defined by the line-of-sight angle leads to a guidance law that allows the achievement of the desired terminal impact angle. As will be shown, this law does not ensure interception for all states of the missile and the target during the engagement. Hence, additional switching surfaces are designed and a switching logic is developed that allows the latax to switch between enforcing sliding mode on one of these surfaces so that the target can be intercepted at the desired impact angle. The guidance laws are designed using nonlinear engagement dynamics for the general case of a maneuvering target.
Resumo:
In this paper, a current hysteresis controller with parabolic boundaries for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed. Parabolic boundaries with generalized vector selection logic, valid for all sectors and rotational direction, is used in the proposed controller. The current error space phasor boundary is obtained by first studying the drive scheme with space vector based PWM (SVPWM) controller. Four parabolas are used to approximate this current error space phasor boundary. The system is then run with space phasor based hysteresis PWM controller by limiting the current error space vector (CESV) within the parabolic boundary. The proposed controller has simple controller implementation, nearly constant switching frequency, extended modulation range and fast dynamic response with smooth transition to the over modulation region.
Resumo:
Evolution of texture and concomitant grain refinement during Equal Channel Angular Pressing (ECAP) of Ti - 13Nb - 13Zr alloy has been presented. Sub-micron sized equiaxed grains with narrow grain size distribution could be achieved after eight pass at 873 K. A characteristic ECAP texture evolved in alpha phase till four passes while the evolution of characteristic ECAP texture in the beta phase could be observed only beyond the fourth pass. On increasing the deformation up to eight passes, the texture in alpha phase weakens while the beta phase shows an ideal ECAP texture. A weaker texture, low dislocation density and high crystallite size values in alpha phase suggest the occurrence of dynamic recrystallization. The absence of texture evolution in beta phase till four passes can be attributed to local lattice rotations. The characteristic ECAP texture in the eight pass deformed sample is attributed to delayed dynamic recrystallization in the beta phase. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Terminal impact angle control is crucial for enhancement of warhead effectiveness. In the literature, this problem has been addressed in the context of targets with lower speeds than the interceptor. However, in the current defence scenario, targets of much higher speed than the interceptor is a reality. This paper presents a generic proportional navigation (PN) based guidance law, that uses the standard PN and novel Retro-PN guidance laws based on the initial engagement geometry and terminal engagement requirements, for three dimensional engagement scenario against higher speed nonmaneuvering targets to control terminal impact angle. Results are obtained on the set of achievable impact angles and conditions on the navigation constant to achieve them. Simulation results are given to support the theoretical findings.
Resumo:
A new `generalized model predictive static programming (G-MPSP)' technique is presented in this paper in the continuous time framework for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. A key feature of the technique is backward propagation of a small-dimensional weight matrix dynamics, using which the control history gets updated. This feature, as well as the fact that it leads to a static optimization problem, are the reasons for its high computational efficiency. It has been shown that under Euler integration, it is equivalent to the existing model predictive static programming technique, which operates on a discrete-time approximation of the problem. Performance of the proposed technique is demonstrated by solving a challenging three-dimensional impact angle constrained missile guidance problem. The problem demands that the missile must meet constraints on both azimuth and elevation angles in addition to achieving near zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Both stationary and maneuvering ground targets are considered in the simulation studies. Effectiveness of the proposed guidance has been verified by considering first order autopilot lag as well as various target maneuvers.
Resumo:
The influence of strain on the mechanical properties and deformation kinetic parameters of nanotwinned (at) copper is investigated by a series of nanoindentation experiments, which were performed by employing sharp indenters with five varying centerline-to-face angles (psi). Comparison experiments were also conducted on (1 1 0) single crystalline Cu. Experimental results indicate that, unlike coarsegrained materials, nt-Cu is prone to plastic flow softening with large material pile-up around the indentation impression at high levels of strains. Localized detwinning becomes more significant with decreasing psi, concomitant with reduced strain-rate sensitivity (m) and enhanced activation volume (V*). The m of nt-Cu is found to depend sensitively on psi with a variation of more than a factor of 3, whereas V* exhibits a much less sensitive trend. This paper discusses the validation of the experimental techniques and the implications of various deformation kinetic parameters on the underlying deformation mechanisms of nt-Ca. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Hanuman langur is one of the widely distributed and extensively studied non-human diurnal primates in India. Until recently it was believed to be a single species - Semnopithecus entellus. Recent molecular and morphological studies suggest that the Hanuman langurs consists of at least three species S. entellus, S. hypoleucos and S. priam. Furthermore, morphological studies suggested that both S. hypoleucos and S. priam have at least three subspecies in each. We explored the use of ecological niche modeling (ENM) to confirm the validity of these seven taxa and an additional taxon S. johnii belonging to the same genus. MaxEnt modeling tool was used with 19 bioclimatic, 12 vegetation and 6 hydrological environmental layers. We reduced total environmental variables to 14 layers after testing for collinearity and an independent test for model prediction was done using ENMTools. A total of 196 non-overlapping data points from primary and secondary sources were used as inputs for ENM. Results showed eight distinct ecological boundaries, corroborating the eight taxa mentioned above thereby confirming validity of these eight taxa. The study, for the first time provided ecological variables that determined the ecological requirements and distribution of members of the Hanuman langur species complex in the Indian peninsula.