312 resultados para (D)-SEQUENCES
Resumo:
In phase-encoded optical CDMA (OCDMA) spreading is achieved by encoding the phase of signal spectrum. Here, a mathematical model for the output signal of a phase-encoded OCDMA system is first derived. This is shown to lead to a performance metric for the design of spreading sequences for asynchronous transmission. Generalized bent functions are used to construct a family of efficient phase-encoding sequences. It is shown how M-ary modulation of these spreading sequences is possible. The problem of designing efficient phaseencoded sequences is then related to the problem of minimizing PMEPR (peak-to-mean envelope power ratio) in an OFDM communication system.
Resumo:
The sum capacity on a symbol-synchronous CDMA system having processing gain N and supporting K power constrained users is achieved by employing any set of N orthogonal sequences if a few users are allowed to signal along multiple dimensions. Analogously, the minimum received power (energy-per-chip) on the symbolsynchronous CDMA system supporting K users that demand specified data rates is attained by employing any set of N orthogonal sequences. At most (N - 1) users need to be split and if there are no oversized users, these split users need to signal only in two dimensions each. These results show that sum capacity or minimum sum power can be achieved with minimal downlink signaling.
Nonlinear Suboptimal Guidance with Impact Angle Constraint for Slow Moving Targets in 1-D Using MPSP
Resumo:
Using a recently developed method named as model predictive static programming (MPSP), a nonlinear suboptimal guidance law for a constant speed missile against a slow moving target with impact angle constraint is proposed. In this paper MPSP technique leads to a closed form solution of the latax history update for the given problem. Guidance command is the latax,which is normal to the missile velocity and the terminal constraints are miss distance and impact angle. The new guidance law is validated by considering the nonlinear kinematics with both lag-free and first order autopilot delay.
Resumo:
In this article, we consider the single-machine scheduling problem with past-sequence-dependent (p-s-d) setup times and a learning effect. The setup times are proportional to the length of jobs that are already scheduled; i.e. p-s-d setup times. The learning effect reduces the actual processing time of a job because the workers are involved in doing the same job or activity repeatedly. Hence, the processing time of a job depends on its position in the sequence. In this study, we consider the total absolute difference in completion times (TADC) as the objective function. This problem is denoted as 1/LE, (Spsd)/TADC in Kuo and Yang (2007) ('Single Machine Scheduling with Past-sequence-dependent Setup Times and Learning Effects', Information Processing Letters, 102, 22-26). There are two parameters a and b denoting constant learning index and normalising index, respectively. A parametric analysis of b on the 1/LE, (Spsd)/TADC problem for a given value of a is applied in this study. In addition, a computational algorithm is also developed to obtain the number of optimal sequences and the range of b in which each of the sequences is optimal, for a given value of a. We derive two bounds b* for the normalising constant b and a* for the learning index a. We also show that, when a < a* or b > b*, the optimal sequence is obtained by arranging the longest job in the first position and the rest of the jobs in short processing time order.
Resumo:
In phase encoding optical CDMA (OCDMA) the spreading is achieved by encoding the phase of signal spectrum. In this paper we first derive a mathematical model for the output of phase encoding OCDMA systems. Based on this model we introduce a metric to design spreading sequences for asynchronous transmission. Then we connect the phase encoding sequence design problem to OFDM PMEPR (peak to mean envelope power ratio) problem. Using this connection we conclude that designing sequences with good properties for samples of timing delay guarantees that the same sequence to be good for all timing delays. Finally using generalized bent function we manage to construct a family of sequences which are good for asynchronous phase encoding OCDMA systems and using these sequences we introduce an M-ary modulation scheme for phase encoding OCDMA
Resumo:
An overview of our recent results relating to the explicit construction of space-time block codes achieving the DMG tradeoff of the quasi-static fading channel is presented. The results include the explicit construction of D-MG optimal codes,generalization of perfect codes to any number of transmit antennas as well as optimal diversity-multiplexing-delay constructions for the MIMO ARQ Channel.
Resumo:
A three-level inverter produces six active vectors, each of normalized magnitudes 1, 0.866, and 0.5, besides a zero vector. The vectors of relative length 0.5 are termed pivot vectors.The three nearest voltage vectors are usually used to synthesize the reference vector. In most continuous pulsewidth-modulation(PWM) schemes, the switching sequence begins from a pivot vector and ends with the same pivot vector. Thus, the pivot vector is applied twice in a subcycle or half-carrier cycle. This paper proposes and investigates alternative switching sequences, which use the pivot vector only once but employ one of the other two vectors twice within the subcycle. The total harmonic distortion(THD) in the fundamental line current pertaining to these novel sequences is studied theoretically as well as experimentally over the whole range of modulation. Compared with centered space vector PWM, two of the proposed sequences lead to reduced THD at high modulation indices at a given average switching frequency.
Resumo:
In terabit-density magnetic recording, several bits of data can be replaced by the values of their neighbors in the storage medium. As a result, errors in the medium are dependent on each other and also on the data written. We consider a simple 1-D combinatorial model of this medium. In our model, we assume a setting where binary data is sequentially written on the medium and a bit can erroneously change to the immediately preceding value. We derive several properties of codes that correct this type of errors, focusing on bounds on their cardinality. We also define a probabilistic finite-state channel model of the storage medium, and derive lower and upper estimates of its capacity. A lower bound is derived by evaluating the symmetric capacity of the channel, i.e., the maximum transmission rate under the assumption of the uniform input distribution of the channel. An upper bound is found by showing that the original channel is a stochastic degradation of another, related channel model whose capacity we can compute explicitly.
Resumo:
Superscalar processors currently have the potential to fetch multiple basic blocks per cycle by employing one of several recently proposed instruction fetch mechanisms. However, this increased fetch bandwidth cannot be exploited unless pipeline stages further downstream correspondingly improve. In particular,register renaming a large number of instructions per cycle is diDcult. A large instruction window, needed to receive multiple basic blocks per cycle, will slow down dependence resolution and instruction issue. This paper addresses these and related issues by proposing (i) partitioning of the instruction window into multiple blocks, each holding a dynamic code sequence; (ii) logical partitioning of the registerjle into a global file and several local jles, the latter holding registers local to a dynamic code sequence; (iii) the dynamic recording and reuse of register renaming information for registers local to a dynamic code sequence. Performance studies show these mechanisms improve performance over traditional superscalar processors by factors ranging from 1.5 to a little over 3 for the SPEC Integer programs. Next, it is observed that several of the loops in the benchmarks display vector-like behavior during execution, even if the static loop bodies are likely complex for compile-time vectorization. A dynamic loop vectorization mechanism that builds on top of the above mechanisms is briefly outlined. The mechanism vectorizes up to 60% of the dynamic instructions for some programs, albeit the average number of iterations per loop is quite small.
Resumo:
Bypass operation with the aid of a special bypass valve is an important part of present-day schemes of protection for h.v. d.c. transmission systems. In this paper, the possibility of using two valves connected to any phase in the bridge convertor for the purpose of bypass operation is studied. The scheme is based on the use of logic circuits in conjunction with modified methods of fault detection. Analysis of the faults in a d.c. transmission system is carried out with the object of determining the requirements of such a logic-circuit control system. An outline of the scheme for the logic-circuit control of the bypass operation for both rectifier and invertor bridges is then given. Finally, conclusions are drawn regarding the advantages of such a system, which include reduction in the number of valves, prevention of severe faults and fast clearance of faults, in addition to the immediate location of the fault and its nature.
Resumo:
Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We consider the vector and scalar form factors of the charm-changing current responsible for the semileptonic decay D -> pi/nu. Using as input dispersion relations and unitarity for the moments of suitable heavy-light correlators evaluated with Operator Product Expansions, including O(alpha(2)(s)) terms in perturbative QCD, we constrain the shape parameters of the form factors and find exclusion regions for zeros on the real axis and in the complex plane. For the scalar form factor, a low-energy theorem and phase information on the unitarity cut are also implemented to further constrain the shape parameters. We finally propose new analytic expressions for the D pi form factors, derive constraints on the relevant coefficients from unitarity and analyticity, and briefly discuss the usefulness of the new parametrizations for describing semileptonic data.