235 resultados para spatial prediction
Resumo:
With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naive Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (approximate to 85%) and specific (approximate to 95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. Proteins 2014; 82:1219-1234. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Tuberculosis (TB) is a life threatening disease caused due to infection from Mycobacterium tuberculosis (Mtb). That most of the TB strains have become resistant to various existing drugs, development of effective novel drug candidates to combat this disease is a need of the day. In spite of intensive research world-wide, the success rate of discovering a new anti-TB drug is very poor. Therefore, novel drug discovery methods have to be tried. We have used a rule based computational method that utilizes a vertex index, named `distance exponent index (D-x)' (taken x = -4 here) for predicting anti-TB activity of a series of acid alkyl ester derivatives. The method is meant to identify activity related substructures from a series a compounds and predict activity of a compound on that basis. The high degree of successful prediction in the present study suggests that the said method may be useful in discovering effective anti-TB compound. It is also apparent that substructural approaches may be leveraged for wide purposes in computer-aided drug design.
Resumo:
H. 264/advanced video coding surveillance video encoders use the Skip mode specified by the standard to reduce bandwidth. They also use multiple frames as reference for motion-compensated prediction. In this paper, we propose two techniques to reduce the bandwidth and computational cost of static camera surveillance video encoders without affecting detection and recognition performance. A spatial sampler is proposed to sample pixels that are segmented using a Gaussian mixture model. Modified weight updates are derived for the parameters of the mixture model to reduce floating point computations. A storage pattern of the parameters in memory is also modified to improve cache performance. Skip selection is performed using the segmentation results of the sampled pixels. The second contribution is a low computational cost algorithm to choose the reference frames. The proposed reference frame selection algorithm reduces the cost of coding uncovered background regions. We also study the number of reference frames required to achieve good coding efficiency. Distortion over foreground pixels is measured to quantify the performance of the proposed techniques. Experimental results show bit rate savings of up to 94.5% over methods proposed in literature on video surveillance data sets. The proposed techniques also provide up to 74.5% reduction in compression complexity without increasing the distortion over the foreground regions in the video sequence.
Resumo:
Finite volume methods traditionally employ dimension by dimension extension of the one-dimensional reconstruction and averaging procedures to achieve spatial discretization of the governing partial differential equations on a structured Cartesian mesh in multiple dimensions. This simple approach based on tensor product stencils introduces an undesirable grid orientation dependence in the computed solution. The resulting anisotropic errors lead to a disparity in the calculations that is most prominent between directions parallel and diagonal to the grid lines. In this work we develop isotropic finite volume discretization schemes which minimize such grid orientation effects in multidimensional calculations by eliminating the directional bias in the lowest order term in the truncation error. Explicit isotropic expressions that relate the cell face averaged line and surface integrals of a function and its derivatives to the given cell area and volume averages are derived in two and three dimensions, respectively. It is found that a family of isotropic approximations with a free parameter can be derived by combining isotropic schemes based on next-nearest and next-next-nearest neighbors in three dimensions. Use of these isotropic expressions alone in a standard finite volume framework, however, is found to be insufficient in enforcing rotational invariance when the flux vector is nonlinear and/or spatially non-uniform. The rotationally invariant terms which lead to a loss of isotropy in such cases are explicitly identified and recast in a differential form. Various forms of flux correction terms which allow for a full recovery of rotational invariance in the lowest order truncation error terms, while preserving the formal order of accuracy and discrete conservation of the original finite volume method, are developed. Numerical tests in two and three dimensions attest the superior directional attributes of the proposed isotropic finite volume method. Prominent anisotropic errors, such as spurious asymmetric distortions on a circular reaction-diffusion wave that feature in the conventional finite volume implementation are effectively suppressed through isotropic finite volume discretization. Furthermore, for a given spatial resolution, a striking improvement in the prediction of kinetic energy decay rate corresponding to a general two-dimensional incompressible flow field is observed with the use of an isotropic finite volume method instead of the conventional discretization. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We develop an optical system for generating multiple light sheets. This is enabled by employing a special class of spatial filters in a cylindrical lens geometry. The proposed binary filter placed at the back aperture of the cylindrical lens results in the generation of a periodic transverse pattern extending along the z axis (i.e., multiple light sheets). Experimental results confirm the generation of multiple light sheets of thickness 6.6 mu m with an intersheet spacing of 13.4 mu m. The proposed imaging technique may facilitate three-dimensional imaging in nano-optics, fluorescence microscopy, and nanobiology. (C) 2014 Optical Society of America
Resumo:
Rugged energy landscapes find wide applications in diverse fields ranging from astrophysics to protein folding. We study the dependence of diffusion coefficient (D) of a Brownian particle on the distribution width (epsilon) of randomness in a Gaussian random landscape by simulations and theoretical analysis. We first show that the elegant expression of Zwanzig Proc. Natl. Acad. Sci. U.S.A. 85, 2029 (1988)] for D(epsilon) can be reproduced exactly by using the Rosenfeld diffusion-entropy scaling relation. Our simulations show that Zwanzig's expression overestimates D in an uncorrelated Gaussian random lattice - differing by almost an order of magnitude at moderately high ruggedness. The disparity originates from the presence of ``three-site traps'' (TST) on the landscape - which are formed by the presence of deep minima flanked by high barriers on either side. Using mean first passage time formalism, we derive a general expression for the effective diffusion coefficient in the presence of TST, that quantitatively reproduces the simulation results and which reduces to Zwanzig's form only in the limit of infinite spatial correlation. We construct a continuous Gaussian field with inherent correlation to establish the effect of spatial correlation on random walk. The presence of TSTs at large ruggedness (epsilon >> k(B)T) gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids. (C) 2014 AIP Publishing LLC.
Resumo:
Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.
Resumo:
Several statistical downscaling models have been developed in the past couple of decades to assess the hydrologic impacts of climate change by projecting the station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs). This paper presents and compares different statistical downscaling models that use multiple linear regression (MLR), positive coefficient regression (PCR), stepwise regression (SR), and support vector machine (SVM) techniques for estimating monthly rainfall amounts in the state of Florida. Mean sea level pressure, air temperature, geopotential height, specific humidity, U wind, and V wind are used as the explanatory variables/predictors in the downscaling models. Data for these variables are obtained from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis dataset and the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model, version 3 (CGCM3) GCM simulations. The principal component analysis (PCA) and fuzzy c-means clustering method (FCM) are used as part of downscaling model to reduce the dimensionality of the dataset and identify the clusters in the data, respectively. Evaluation of the performances of the models using different error and statistical measures indicates that the SVM-based model performed better than all the other models in reproducing most monthly rainfall statistics at 18 sites. Output from the third-generation CGCM3 GCM for the A1B scenario was used for future projections. For the projection period 2001-10, MLR was used to relate variables at the GCM and NCEP grid scales. Use of MLR in linking the predictor variables at the GCM and NCEP grid scales yielded better reproduction of monthly rainfall statistics at most of the stations (12 out of 18) compared to those by spatial interpolation technique used in earlier studies.
Resumo:
Time-varying linear prediction has been studied in the context of speech signals, in which the auto-regressive (AR) coefficients of the system function are modeled as a linear combination of a set of known bases. Traditionally, least squares minimization is used for the estimation of model parameters of the system. Motivated by the sparse nature of the excitation signal for voiced sounds, we explore the time-varying linear prediction modeling of speech signals using sparsity constraints. Parameter estimation is posed as a 0-norm minimization problem. The re-weighted 1-norm minimization technique is used to estimate the model parameters. We show that for sparsely excited time-varying systems, the formulation models the underlying system function better than the least squares error minimization approach. Evaluation with synthetic and real speech examples show that the estimated model parameters track the formant trajectories closer than the least squares approach.
Resumo:
High wind poses a number of hazards in different areas such as structural safety, aviation, and wind energy-where low wind speed is also a concern, pollutant transport, to name a few. Therefore, usage of a good prediction tool for wind speed is necessary in these areas. Like many other natural processes, behavior of wind is also associated with considerable uncertainties stemming from different sources. Therefore, to develop a reliable prediction tool for wind speed, these uncertainties should be taken into account. In this work, we propose a probabilistic framework for prediction of wind speed from measured spatio-temporal data. The framework is based on decompositions of spatio-temporal covariance and simulation using these decompositions. A novel simulation method based on a tensor decomposition is used here in this context. The proposed framework is composed of a set of four modules, and the modules have flexibility to accommodate further modifications. This framework is applied on measured data on wind speed in Ireland. Both short-and long-term predictions are addressed.
Resumo:
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Resumo:
The performance of prediction models is often based on ``abstract metrics'' that estimate the model's ability to limit residual errors between the observed and predicted values. However, meaningful evaluation and selection of prediction models for end-user domains requires holistic and application-sensitive performance measures. Inspired by energy consumption prediction models used in the emerging ``big data'' domain of Smart Power Grids, we propose a suite of performance measures to rationally compare models along the dimensions of scale independence, reliability, volatility and cost. We include both application independent and dependent measures, the latter parameterized to allow customization by domain experts to fit their scenario. While our measures are generalizable to other domains, we offer an empirical analysis using real energy use data for three Smart Grid applications: planning, customer education and demand response, which are relevant for energy sustainability. Our results underscore the value of the proposed measures to offer a deeper insight into models' behavior and their impact on real applications, which benefit both data mining researchers and practitioners.
Resumo:
Large-scale estimates of the area of terrestrial surface waters have greatly improved over time, in particular through the development of multi-satellite methodologies, but the generally coarse spatial resolution (tens of kms) of global observations is still inadequate for many ecological applications. The goal of this study is to introduce a new, globally applicable downscaling method and to demonstrate its applicability to derive fine resolution results from coarse global inundation estimates. The downscaling procedure predicts the location of surface water cover with an inundation probability map that was generated by bagged derision trees using globally available topographic and hydrographic information from the SRTM-derived HydroSHEDS database and trained on the wetland extent of the GLC2000 global land cover map. We applied the downscaling technique to the Global Inundation Extent from Multi-Satellites (GIEMS) dataset to produce a new high-resolution inundation map at a pixel size of 15 arc-seconds, termed GIEMS-D15. GIEMS-D15 represents three states of land surface inundation extents: mean annual minimum (total area, 6.5 x 10(6) km(2)), mean annual maximum (12.1 x 10(6) km(2)), and long-term maximum (173 x 10(6) km(2)); the latter depicts the largest surface water area of any global map to date. While the accuracy of GIEMS-D15 reflects distribution errors introduced by the downscaling process as well as errors from the original satellite estimates, overall accuracy is good yet spatially variable. A comparison against regional wetland cover maps generated by independent observations shows that the results adequately represent large floodplains and wetlands. GIEMS-D15 offers a higher resolution delineation of inundated areas than previously available for the assessment of global freshwater resources and the study of large floodplain and wetland ecosystems. The technique of applying inundation probabilities also allows for coupling with coarse-scale hydro-climatological model simulations. (C) 2014 Elsevier Inc All rights reserved.
Resumo:
Using the spatial modulation approach, where only one transmit antenna is active at a time, we propose two transmission schemes for two-way relay channel using physical layer network coding with space time coding using coordinate interleaved orthogonal designs (CIODs). It is shown that using two uncorrelated transmit antennas at the nodes, but using only one RF transmit chain and space-time coding across these antennas can give a better performance without using any extra resources and without increasing the hardware implementation cost and complexity. In the first transmission scheme, two antennas are used only at the relay, adaptive network coding (ANC) is employed at the relay and the relay transmits a CIOD space time block code (STBC). This gives a better performance compared to an existing ANC scheme for two-way relay channel which uses one antenna each at all the three nodes. It is shown that for this scheme at high SNR the average end-to-end symbol error probability (SEP) is upper bounded by twice the SEP of a point-to-point fading channel. In the second transmission scheme, two transmit antennas are used at all the three nodes, CIOD STBCs are transmitted in multiple access and broadcast phases. This scheme provides a diversity order of two for the average end-to-end SEP with an increased decoding complexity of O(M-3) for an arbitrary signal set and O(M-2 root M) for square QAM signal set. Simulation results show that the proposed schemes performs better than the existing ANC schemes under perfect and imperfect channel state information.
Resumo:
We propose a laser interference technique for the fabrication of 3D nano-structures. This is possible with the introduction of specialized spatial filter in a 2 pi cylindrical lens system (consists of two opposing cylindrical lens sharing a common geometrical focus). The spatial filter at the back-aperture of a cylindrical lens gives rise to multiple light-sheet patterns. Two such interfering counter-propagating light-sheet pattern result in periodic 3D nano-pillar structure. This technique overcomes the existing slow point-by-point scanning, and has the ability to pattern selectively over a large volume. The proposed technique allows large-scale fabrication of periodic structures. Computational study shows a field-of-view (patterning volume) of approximately 12: 2mm(3) with the pillar-size of 80 nm and inter-pillar separation of 180 nm. Applications are in nano-waveguides, 3D nano-electronics, photonic crystals, and optical microscopy. (C) 2015 AIP Publishing LLC.