213 resultados para self-belief
Resumo:
Recent years have seen a tremendous increase in the interest for constructing hollowed-out molecular frameworks, for their potential uses. Metal-ligand coordination-driven self-assembly has provided multitudes of opportunities in the formation of molecular architectures of desired shapes and sizes, with the help of the information already coded in the components. This article summarizes the recent developments in the construction of multicomponent molecular cages through this process, with a focus on the decreasing relevance of templates, and use of these systems in catalysis/host-guest chemistry.
Resumo:
A series of polyesters based on 2-propargyl-1,3-propanediol or 2,2-dipropargyl-1,3-propanediol or 2-allyl-2-propargyl-1,3-propanediol and 1,20-eicosanedioic acid were prepared by solution polycondensation using the corresponding diacid chloride; these polyesters were quantitatively ``clicked'' with a fluoroalkyl, azide, namely CF3(CF2)(7)CH2CH2N3, to yield polyesters carrying long-chain alkylene segments in the backbone and either one or two perfluoroalkyl segments located at periodic intervals along the polymer chain. The immiscibility of the alkylene and fluoroalkyl segments causes the polymer chains to fold in a zigzag fashion to facilitate the segregation of these segments; the folded chains further organize in the solid state to form a lamellar structure with alternating domains of alkyl (HC) and fluoroalkyl (FC) segments. Evidence for the self-segregation is provided by DSC, SAXS, WAXS, and TEM studies; in two of the samples, the DSC thermograms showed two distinct endotherms associated with the melting of the individual domains, while the WAXS patterns confirm the existence of two separate peaks corresponding to the interchain distances within the crystalline lattices of the HC and FC domains. SAXS data, on the other hand, reveal the formation of an extended lamellar morphology with an interlamellar spacing that matches reasonably well with those estimated from TEM studies. Interestingly, a smectic-type liquid crystalline phase is observed at temperatures between the two melting transitions. These systems present a unique opportunity to develop interesting nanostructured polymeric materials with precise control over both the domain size and morphology; importantly, the domain sizes are far smaller than those typically observed in traditional block copolymers.
Resumo:
The structural, magnetic and dielectric properties of nano zinc ferrite prepared by the propellant chemistry technique are studied. The PXRD measurement at room temperature reveal that the compound is in cubic spinel phase, belong to the space group Fd (3) over barm. The unit cell parameters have been estimated from Rietveld refinement. The calculated force constants from FTIR spectrum corresponding to octahedral and tetrahedral sites at 375 and 542 cm(-1) are 6.61 x 10(2) and 3.77 x 10(2) N m(-1) respectively; these values are slightly higher compared to the other ferrite systems. Magnetic hysteresis and EPR spectra show superparamagnetic property nearly to room temperature due to comparison values between magnetic anisotropy energy and the thermal energy. The calculated values of saturation magnetization, remenant magnetization, coercive field and magnetic moment supports for the existence of multi domain particles in the sample. The temperature dependent magnetic field shows the spin freezing state at 30 K and the blocking temperature at above room temperature. The frequency dependent dielectric interactions show the variation of dielectric constant, dielectric loss and impedance as similar to other ferrite systems. The AC conductivity in the prepared sample is due to the presence of electrons, holes and polarons. The synthesized material is suitable for nano-electronics and biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A new methodology has been developed for synthesizing lanthanide trifluoride (LnF(3)) nanoparticles using a simple diffusion technique. The approach uses a lanthanide based hydrogel matrix to control the kinetics of the reaction, which also acts as a stabilizing platform, thus enabling the room temperature, in situ synthesis of finely sized (3-5 nm), monodisperse nanoparticles that were found to form in an ordered pattern on the gel fibers.
Resumo:
We study the phenomenon of evaporation-driven self-assembly of a colloid suspension of silica microspheres in the interior region and away from the rim of the droplet on a glass plate. In view of the importance of achieving a large-area, monolayer assembly, we first realize a suitable choice of experimental conditions, minimizing the influence of many other competing phenomena that usually complicate the understanding of fundamental concepts of such self-assembly processes in the interior region of a drying droplet. Under these simplifying conditions to bring out essential aspects, our experiments unveil an interesting competition between ordering and compaction in such drying systems in analogy to an impending glass transition. We establish a re-entrant behavior in the order disorder phase diagram as a function of the particle density, such that there is an optimal range of the particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.
Resumo:
Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.
Resumo:
We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250-400 degrees C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (similar to 10-15 nm) and micron long ITO NWs growth was observed in a temperature window of 300-400 degrees C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300-400 degrees C have shown similar to 2-6% reflection and similar to 70-85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.
Resumo:
Peptide based self assembled nanostructures have attracted growing interest in recent years due to their numerous potential applications particularly in biomedical sciences. Di-peptide Phe-Phe was shown previously to self-assemble into nanotube like structures. In this work, we studied the affect of peptide backbone length and conformational flexibility on the self assembly process by using two dipeptides based on the Phe-Phe backbone (beta Phe-Phe and beta Phe-Delta Phe): one containing a flexible beta Phe amino acid, and the other containing both a flexible bPhe as well as a backbone constraining Alpha Phe (alpha,beta-dehydrophenylalanine) amino acid. Electron microscopy and X-ray diffraction experiments revealed that these new di-peptides can self-assemble into nanotubes having different properties than the native Phe-Phe nanotubes. These nanotubes were stable over a broad range of temperatures and the introduction of non-natural amino acids provided them with stability against the action of nonspecific proteases. Moreover, these dipeptides showed no cytotoxicity towards HeLa and L929 cells, and were able to encapsulate small drug molecules. We further showed that anticancerous drug mitoxantrone was more efficient in killing HeLa and B6F10 cells when entrapped in nanotubes as compared to free mitoxantrone. Therefore, these beta-phenylalanine and alpha, beta-dehydrophenylalanine containing dipeptide nanotubes may be useful in the development of biocompatible and proteolytically stable drug delivery vehicles.
Self-organized public key management in MANETs with enhanced security and without certificate-chains
Resumo:
In the self-organized public key management approaches, public key verification is achieved through verification routes constituted by the transitive trust relationships among the network principals. Most of the existing approaches do not distinguish among different available verification routes. Moreover, to ensure stronger security, it is important to choose an appropriate metric to evaluate the strength of a route. Besides, all of the existing self-organized approaches use certificate-chains for achieving authentication, which are highly resource consuming. In this paper, we present a self-organized certificate-less on-demand public key management (CLPKM) protocol, which aims at providing the strongest verification routes for authentication purposes. It restricts the compromise probability for a verification route by restricting its length. Besides, we evaluate the strength of a verification route using its end-to-end trust value. The other important aspect of the protocol is that it uses a MAC function instead of RSA certificates to perform public key verifications. By doing this, the protocol saves considerable computation power, bandwidth and storage space. We have used an extended strand space model to analyze the correctness of the protocol. The analytical, simulation, and the testbed implementation results confirm the effectiveness of the proposed protocol. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The average time tau(r) for one end of a long, self-avoiding polymer to interact for the first time with a flat penetrable surface to which it is attached at the other end is shown here to scale essentially as the square of the chain's contour length N. This result is obtained within the framework of the Wilemski-Fixman approximation to diffusion-limited reactions, in which the reaction time is expressed as a time correlation function of a ``sink'' term. In the present work, this sink-sink correlation function is calculated using perturbation expansions in the excluded volume and the polymer-surface interactions, with renormalization group methods being used to resum the expansion into a power law form. The quadratic dependence of tau(r) on N mirrors the behavior of the average time tau(c) of a free random walk to cyclize, but contrasts with the cyclization time of a free self-avoiding walk (SAW), for which tau(r) similar to N-2.2. A simulation study by Cheng and Makarov J. Phys. Chem. B 114, 3321 (2010)] of the chain-end reaction time of an SAW on a flat impenetrable surface leads to the same N-2.2 behavior, which is surprising given the reduced conformational space a tethered polymer has to explore in order to react. (C) 2014 AIP Publishing LLC.
Resumo:
Polyelectrolytes are charged polymer species which electrostatically adsorb onto surfaces in a layer by layer fashion leading to the sequential assembly of multilayer structures. It is known that the morphology of weak polyelectrolyte structures is strongly influenced by environmental variables such as pH. We created a weak polyelectrolyte multilayer structure (similar to 100 nm thick) of cationic polymer poly-allylamine hydrochloride (PAH) and an anionic polymer poly-acrylic acid (PAA) on an etched clad fiber Bragg grating (EFBG) to study the pH induced conformational transitions in the polymer multilayers brought about by the variation in charge density of weak polyelectrolyte groups as a function of pH. The conformational changes of the polyelectrolyte multilayer structure lead to changes in optical density of the adsorbed film which reflects in the shift of the Bragg wavelength from the EFBG. Using the EFBG system we were able to probe reversible and irreversible pH induced transitions in the PAH/PAA weak polyelectrolyte system. (C) 2014 Elsevier B.V. All rights reserved.