384 resultados para platinum-ruthenium alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable interest currently in developing magnesium based alloys as replacements for aluminum alloys in automobile applications, due to their high specific strength as compared to aluminum alloys. However, the poor formability of magnesium alloys has restricted their applications; superplasticity can be utilized to form components with complex shapes. In the present study, the compressive deformation characteristics of a Mg-0.8 wt% Al alloy with an initial grain size of 19 +/- 1.0 mum have been studied in the temperature range of 623-673 K and at strain rates ranging from 10(-7) to 10(-3) s(-1). The stress exponent was observed to decrease with a decrease in stress. The results are analyzed in terms of the existing theoretical models for high temperature deformation. Furthermore, the potential for superplasticity in this alloy is explored, based on the mechanical and microstructural characteristics of the alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The severe wear of a near eutectic aluminium silicon alloy is explored using a range of electron microscopic, spectroscopic and diffraction techniques to identify the residually strained and unstrained regions, microcracks and oxidized regions in the subsurface. In severe wear the contact pressure exceeds the elastic shakedown limit. Under this condition the primary and eutectic silicon particles fragment drastically. The fragments are transported by the matrix as it undergoes incremental straining with each cyclic contact at the asperity level. The grains are refined from similar to 2000 nm in the bulk to 30 nm in the near surface region. A large reduction in the interparticle distance compared with that for a milder stage of wear gives rise to high strain gradients which contribute to an enhancement of the dislocation density. The resulting regions of very high strain in the boundaries of the recrystallized grains as well as within the subgrains lead to the formation of microvoidskracks. This is accompanied by the formation of brittle oxides at these subsurface interfaces due to enhanced diffusion of oxygen. We believe that the abundance of such microcracks in the near surface region, primed by severe plastic deformation, is what distinguishes a severe wear regime from mild wear. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoeutectic boron addition (0.1 wt.%) to Ti-6Al-4V is known to cause significant refinement of the cast microstructure. In the present investigation, it has been observed that trace boron addition to Ti-6Al-4V alloy also ensures excellent microstructural homogeneity throughout the ingot. A subdued thermal gradient, related to the basic grain refinement mechanism by constitutional undercooling, persists during solidification for the boron-containing alloy and maintains equivalent beta grain growth kinetics at different locations in the ingot. The Ti-6Al-4V alloy shows relatively strong texture with preferred components (e.g. ingot axis parallel to[0 0 0 1] or [1 0 (1) over bar 0]) over the entire ingot and gradual transition of texture components along the radius. For Ti-6Al-4V-0.1B alloy, significant weakening characterizes both the high-temperature beta and room-temperature a texture. In addition to solidification factors that are responsible for weak beta texture development, microstructural differences due to boron addition, e.g. the absence of grain boundary alpha phase and presence of TiB particles, strongly affects the mechanism of beta -> alpha phase transformation and consequently weakens the alpha phase texture. Based on the understanding developed for the boron-modified alloy, a novel mechanism has been proposed for the microstructure and texture formation during solidification and phase transformation. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In literature we find broadly two types of shape memory alloy based motors namely limited rotation motor and unlimited rotation motor. The unlimited rotation type SMA based motor reported in literature uses SMA springs for actuation. An attempt has been made in this paper to develop an unlimited rotation type balanced poly phase motor based on SMA wire in series with a spring in each phase. By isolating SMA actuation and spring action we are able achieve a constant force by the SMA wire through out its range of operation. The Poly phase motor can be used in stepping mode for generating incremental motion and servo mode for generating continuous motion. A method of achieving servo motion by micro stepping is presented. Micro stepping consists of controlling single-phase temperature with a position feedback. The motor has been modeled with a new approach to the SMA wire Hysterysis model. Motor is simulated for different responses and the results are compared with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150mm square, 20mm thick and uses SMA wire of 0·4mm diameter and 125mm of length in each phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the beta transus of boron-modified Ti-6Al-4V alloy was found to be almost equivalent to that of the normal alloy, although there is a difference in interstitial element content large enough to produce significant change. Compositional analysis confirms the scavenging ability of the boride particles that are present in the microstructure toward the interstitial elements. This factor can successfully retard the alpha -> beta phase transformation locally and increase the overall beta transus of boron-added material.