239 resultados para non linear pedagogy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-linear precoding for the downlink of a multiuser MISO (multiple-input single-output) communication system in the presence of imperfect channel state information (CSI) is considered.The base station is equipped with multiple transmit antennas and each user terminal is equipped with a single receive antenna. The CSI at the transmitter is assumed to be perturbed by an estimation error. We propose a robust minimum mean square error (MMSE) Tomlinson-Harashima precoder (THP)design, which can be formulated as an optimization problem that can be solved efficiently by the method of alternating optimization(AO). In this method of optimization, the entire set of optimization variables is partitioned into non-overlapping subsets,and an iterative sequence of optimizations on these subsets is carried out, which is often simpler compared to simultaneous optimization over all variables. In our problem, the application of the AO method results in a second-order cone program which can be numerically solved efficiently. The proposed precoder is shown to be less sensitive to imperfect channel knowledge. Simulation results illustrate the improvement in performance compared to other robust linear and non-linear precoders in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of maximum margin classification given the moments of class conditional densities and the false positive and false negative error rates. Using Chebyshev inequalities, the problem can be posed as a second order cone programming problem. The dual of the formulation leads to a geometric optimization problem, that of computing the distance between two ellipsoids, which is solved by an iterative algorithm. The formulation is extended to non-linear classifiers using kernel methods. The resultant classifiers are applied to the case of classification of unbalanced datasets with asymmetric costs for misclassification. Experimental results on benchmark datasets show the efficacy of the proposed method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper develops a family of explicit algorithms for rotational dynamics and presents their comparison with several existing methods. For rotational motion the configuration space is a non-linear manifold, not a Euclidean vector space. As a consequence the rotation vector and its time derivatives correspond to different tangent spaces of rotation manifold at different time instants. This renders the usual integration algorithms for Euclidean space inapplicable for rotation. In the present algorithms this problem is circumvented by relating the equation of motion to a particular tangent space. It has been accomplished with the help of already existing relation between rotation increments which belongs to two different tangent spaces. The suggested method could in principle make any integration algorithm on Euclidean space, applicable to rotation. However, the present paper is restricted only within explicit Runge-Kutta enabled to handle rotation. The algorithms developed here are explicit and hence computationally cheaper than implicit methods. Moreover, they appear to have much higher local accuracy and hence accurate in predicting any constants of motion for reasonably longer time. The numerical results for solutions as well as constants of motion, indicate superior performance by most of our algorithms, when compared to some of the currently known algorithms, namely ALGO-C1, STW, LIEMID[EA], MCG, SUBCYC-M.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Designing and optimizing high performance microprocessors is an increasingly difficult task due to the size and complexity of the processor design space, high cost of detailed simulation and several constraints that a processor design must satisfy. In this paper, we propose the use of empirical non-linear modeling techniques to assist processor architects in making design decisions and resolving complex trade-offs. We propose a procedure for building accurate non-linear models that consists of the following steps: (i) selection of a small set of representative design points spread across processor design space using latin hypercube sampling, (ii) obtaining performance measures at the selected design points using detailed simulation, (iii) building non-linear models for performance using the function approximation capabilities of radial basis function networks, and (iv) validating the models using an independently and randomly generated set of design points. We evaluate our model building procedure by constructing non-linear performance models for programs from the SPEC CPU2000 benchmark suite with a microarchitectural design space that consists of 9 key parameters. Our results show that the models, built using a relatively small number of simulations, achieve high prediction accuracy (only 2.8% error in CPI estimates on average) across a large processor design space. Our models can potentially replace detailed simulation for common tasks such as the analysis of key microarchitectural trends or searches for optimal processor design points.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to demonstrate the feasibility of Active Fiber Composites (AFC) as sensors for detecting damage, a pretwisted strip made of AFC with symmetric free-edge delamination is considered in this paper. The strain developed on the top/bottom of the strip is measured to detect and assess delamination. Variational Asymptotic Method (VAM) is used in the development of a non-classical non-linear cross sectional model of the strip. The original three dimensional (3D) problem is simplified by the decomposition into two simpler problems: a two-dimensional (2D) problem, which provides in a compact form the cross-sectional properties using VAM, and a non-linear one-dimensional (1D) problem along the length of the beam. This procedure gives the non-linear stiffnesses, which are very sensitive to damage, at any given cross-section of the strip. The developed model is used to study a special case of cantilevered laminated strip with antisymmetric layup, loaded only by an axial force at the tip. The charge generated in the AFC lamina is derived in closed form in terms of the 1D strain measures. It is observed that delamination length and location have a definite influence on the charge developed in the AFC lamina. Also, sensor voltage output distribution along the length of the beam is obtained using evenly distributed electrode strip. These data could in turn be used to detect the presence of damage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dial-a-ride problem (DARP) is an optimization problem which deals with the minimization of the cost of the provided service where the customers are provided a door-to-door service based on their requests. This optimization model presented in earlier studies, is considered in this study. Due to the non-linear nature of the objective function the traditional optimization methods are plagued with the problem of converging to a local minima. To overcome this pitfall we use metaheuristics namely Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System (AIS). From the results obtained, we conclude that Artificial Immune System method effectively tackles this optimization problem by providing us with optimal solutions. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Effective Exponential SNR Mapping (EESM) is an indispensable tool for analyzing and simulating next generation orthogonal frequency division multiplexing (OFDM) based wireless systems. It converts the different gains of multiple subchannels, over which a codeword is transmitted, into a single effective flat-fading gain with the same codeword error rate. It facilitates link adaptation by helping each user to compute an accurate channel quality indicator (CQI), which is fed back to the base station to enable downlink rate adaptation and scheduling. However, the highly non-linear nature of EESM makes a performance analysis of adaptation and scheduling difficult; even the probability distribution of EESM is not known in closed-form. This paper shows that EESM can be accurately modeled as a lognormal random variable when the subchannel gains are Rayleigh distributed. The model is also valid when the subchannel gains are correlated in frequency or space. With some simplifying assumptions, the paper then develops a novel analysis of the performance of LTE's two CQI feedback schemes that use EESM to generate CQI. The comprehensive model and analysis quantify the joint effect of several critical components such as scheduler, multiple antenna mode, CQI feedback scheme, and EESM-based feedback averaging on the overall system throughput.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three-dimensional (3D) resolution improvement in multi-photon multiple-excitation-spot-optical microscopy is proposed. Specially designed spatial filter is employed for improving the overall 3D resolution of the imaging system. An improvement up to a factor of 14.5 and sub-femto liter volume excitation is achieved. The system shows substantial sidelobe reduction (<4%) due to the non-linear intensity dependence of multiphoton process. Polarization effect on x-oriented and freely rotating dipoles shows dramatic change in the field distribution at the focal-plane. The resulting point-spread function has the ability to produce several strongly localized polarization dependent field patterns which may find applications in optical engineering and bioimaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An extension to a formal verification approach of hybrid systems is proposed to verify analog and mixed signal (AMS) designs. AMS designs can be formally modeled as hybrid systems and therefore lend themselves to the formal analysis and verification techniques applied to hybrid systems. The proposed approach employs simulation traces obtained from an actual design implementation of AMS circuit blocks (for example, in the form of SPICE netlists) to carry out formal analysis and verification. This enables the same platform used for formally validating an abstract model of an AMS design, to be also used for validating its different refinements and design implementation; thereby, providing a simple route to formal verification at different levels of implementation. The feasibility of the proposed approach is demonstrated with a case study based on a tunnel diode oscillator. Since the device characteristic of a tunnel diode is highly non-linear with a negative resistance region, dynamic behavior of circuits in which it is employed as an element is difficult to model, analyze and verify within a general hybrid system formal verification tool. In the case study presented the formal model and the proposed computational techniques have been incorporated into CheckMate, a formal verification tool based on MATLAB and Simulink-Stateflow Framework from MathWorks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Homogenization of partial differential equations is relatively a new area and has tremendous applications in various branches of engineering sciences like: material science,porous media, study of vibrations of thin structures, composite materials to name a few. Though the material scientists and others had reasonable idea about the homogenization process, it was lacking a good mathematical theory till early seventies. The first proper mathematical procedure was developed in the seventies and later in the last 30 years or so it has flourished in various ways both application wise and mathematically. This is not a full survey article and on the other hand we will not be concentrating on a specialized problem. Indeed, we do indicate certain specialized problems of our interest without much details and that is not the main theme of the article. I plan to give an introductory presentation with the aim of catering to a wider audience. We go through few examples to understand homogenization procedure in a general perspective together with applications. We also present various mathematical techniques available and if possible some details about some of the techniques. A possible definition of homogenization would be that it is a process of understanding a heterogeneous (in-homogeneous) media, where the heterogeneties are at the microscopic level, like in composite materials, by a homogeneous media. In other words, one would like to obtain a homogeneous description of a highly oscillating in-homogeneous media. We also present other generalizations to non linear problems, porous media and so on. Finally, we will like to see a closely related issue of optimal bounds which itself is an independent area of research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stability analysis of residual soil slopes are now increasingly being performed with the incorporation of the matric suction component of strength. The matric suction (u(a)-u(w)) component of shear strength is known as apparent cohesion. The relation between matric suction and apparent cohesion (c(app)) may be linear or non-linear. The impact of type of apparent strength versus matric suction relationship on the stability of an unsaturated residual soil slope is examined in this study. Results of the study showed that the factor of safety values were unaffected by the nature of the strength versus matric suction relationship for the residual soil slope examined. This was so as contribution from the effective stress- strength component to the factor of safety predominated over the contribution made by the apparent strength component.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermal management of distributed electronics similar to data centers is studied using a bi-disperse porous medium (BDPM) approach. The BDPM channel comprises heat generating micro-porous square blocks, separated by macro-pores. Laminar forced convection cooling fluid of Pr = 0.7 saturates both the micro- and macro-pores. Bi-dispersion effect is induced by varying the macro-pore volume fraction phi(E), and by changing the number of porous blocks N-2, both representing re-distribution of the electronics. When 0.2 <= phi(E) <= 0.86, the heat transfer No is enhanced twice (from similar to 550 to similar to 1100) while the pressure drop Delta p* reduces almost eightfold. For phi(E) < 0.5, No reduces quickly to reach a minimum at the mono -disperse porous medium (MDPM) limit (phi(E) -> 0). Compared to N-2 = 1 case, No for BDPM configuration is high when N-2 >> 1, i.e., the micro-porous blocks are many and well distributed. The Nu increase with Re changes from non-linear to linear as N-2 increases from 1 to 81, with corresponding insignificant pumping power increase. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Finite element modeling can be a useful tool for predicting the behavior of composite materials and arriving at desirable filler contents for maximizing mechanical performance. In the present study, to corroborate finite element analysis results, quantitative information on the effect of reinforcing polypropylene (PP) with various proportions of nanoclay (in the range of 3-9% by weight) is obtained through experiments; in particular, attention is paid to the Young's modulus, tensile strength and failure strain. Micromechanical finite element analysis combined with Monte Carlo simulation have been carried out to establish the validity of the modeling procedure and accuracy of prediction by comparing against experimentally determined stiffness moduli of nanocomposites. In the same context, predictions of Young's modulus yielded by theoretical micromechanics-based models are compared with experimental results. Macromechanical modeling was done to capture the non-linear stress-strain behavior including failure observed in experiments as this is deemed to be a more viable tool for analyzing products made of nanocomposites including applications of dynamics. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fatigue de-bond growth studies have been conducted on adhesively bonded lap joint specimens between aluminium and aluminium with Redux-319A adhesive with a pre-defined crack of 3 mm at the bond end. The correlations between fracture parameters and the de-bond growth data are established using both numerical and experimental techniques. In the numerical method, geometrically non-linear finite element analyses were carried out on adhesively bonded joint specimen for various de-bond lengths measured from the lap end along the mid-bond line of the adhesive. The finite element results were post processed to estimate the SERR components G (I) and G (II) using the Modified Virtual Crack Closure Integral (MVCCI) procedure. In experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a stress ratio R = -1. The results obtained from both numerical analyses and testing have been used to generate de-bond growth curve and establish de-bond growth law in the Paris regime for such joints. The de-bond growth rate is primarily function of mode-I SERR component G (I) since the rate of growth in shear mode is relatively small. The value of Paris exponent m is found to be 6.55. The high value of de-bond growth exponent in Paris regime is expected, since the adhesive is less ductile than conventional metallic materials. This study is important for estimating the life of adhesively bonded joints under both constant and variable amplitude fatigue loads.