222 resultados para glasses
Resumo:
Raman spectroscopic study on Oxyfluoro Vanadate glasses containing various proportions of lithium fluoride and rubidium fluoride was carried out to see an effect of mixture of alkali on vanadium-oxygen (V-O) bond length. Glasses with a general formula 40V(2)O(5) - 30BaF(2) - (30 - x) LiF - xRbF (x = 0-30) were prepared. Room temperature Raman spectra of these glass samples were recorded in back scattering geometry. The data presented is in ``reduced Raman intensity'' form with maximum peak scaled to 100. We have used v = Aexp(BR), where A and B are fitting parameters, to correlate the bond length R with Raman scattering frequency v. We observed that variation in bond length and its distribution about a most probable value can be correlated to the alkali environment present in these glasses. We also observed that all rubidium environment around the network forming unit is more homogenous than all lithium environment.
Resumo:
Optical straight waveguides are inscribed in GeGaS and GeGaSSb glasses using a high repetition-rate sub-picosecond laser. The mechanical properties of the glasses in the inscribed regions, which have undergone photo induced changes, have been evaluated by using the nanoindentation technique. Results show that the hardness and elastic modulus of the photo-modified glasses are significantly lower as compared to the other locations in the waveguide, which tend to be similar to those of the unexposed areas. The observed mechanical effects are found to correlate well with the optical properties of the waveguides. Further, based on the results, the minimum threshold values of hardness and elastic modulus for the particular propagation mode of the waveguide (single or multi), has been established.
Resumo:
Anelastic and viscoplastic characteristics of Cu50Zr50 and Cu65Zr35 binary bulk metallic glasses at room temperature were examined through nanoindentation creep experiments. Results show that both the deformations are relatively more pronounced in Cu50Zr50 than in Cu65Zr35, and their amount increases with the loading rate. The results are analyzed in terms of the influences of structural defects and loading rate on the room temperature indentation creep.
Resumo:
Ion conducting glasses in xLiCl-20Li(2)O-(80-x) 0.80P(2)O(5)-0.20MoO(3)] glass system have been prepared over a wide range of composition (X = 5, 10, 15, 20 and 25 mol%). The electrical conductivity and dielectric relaxation of these glasses were analyzed using impedance spectroscopy in the frequency range of 10 Hz-10 MHz and in the temperature range of 313-353 K. D.c. activation energies extracted from Arrhenius plots using regression analysis, decreases with increasing LiCl mol%. A.c. conductivity data has been fitted to both single and double power law equation with both fixed and variable parameters. The increased conductivity in the present glass system has been correlated with the volume increasing effect and the coordination changes that occur due to structural modification resulting in the creation of non-bridging oxygens (NBO's) of the type O-Mo-O- bonds in the glass network. Dielectric relaxation mechanism in these glasses is analyzed using Kohlrausch-Williams-Watts (KWW) stretched exponential function and stretched exponent (beta) is found to be insensitive to temperature.
Resumo:
In contemporary world optoelectronics materials are used in daily life owing to its verity of applications. Utility of these materials makes them attractive for investigations. Specifically study regarding optical properties of recent developed materials is worth for technical uses. Therefore, this work demonstrates a comparative study of extinction coefficient (K), real dielectric (epsilon') and imaginary dielectric (epsilon `') constants, refractive index (n) and optical energy band gap (E-g) with structural unit < r > for Se98-xZn2Inx (0 <= X-In <= 10) and Se93-yZn2Te5Iny (0 <= Y-In <= 10) chalcogenide glasses. Fixed amount of Te with increasing In concentration as cost of Se is largely influence the optical parameters of the materials. Values of optical parameters are obtained higher and lower respectively at thresholds structural units values. This comparative study demonstrates that enhanced values of optical parameters have been obtained for Te containing Se-Zn-In glasses.
Resumo:
Glasses in the x(BaO-TiO2)-B2O3 (x = 0.25, 0.5, 0.75, and 1 mol.) system were fabricated via the conventional melt-quenching technique. Thermal stability and glass-forming ability as determined by differential thermal analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (T-g). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units, which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units and their connectivity in the glasses.
Resumo:
Glasses and glass-nanocrystal (anatase TiO2) composites in BaO-TiO2-B2O3 system were fabricated by conventional melt-quenching technique and controlled heat treatment respectively. Poisson's ratio and Young's moduli were predicted through Makishima-Mackenzie theoretical equation for the as-quenched glasses by taking the four and three coordinated borons into account. Mechanical properties of the glasses and glass-nanocrystal composites were investigated in detail through nanoindentation and microindentation studies. Predicted Young's moduli of glasses were found to be in reasonable agreement with nanoindentation Measurements. Hardness and Young's modulus were enhanced with increasing volume fraction of nanocrystallites of TiO2 in glass matrix whereas fracture toughness was found susceptible to the surface features. The results were correlated to the structural units and nanocrystals present in the glasses. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The mixed alkali metal effect is a long-standing problem in glasses. Electron paramagnetic resonance (EPR) is used by several researchers to study the mixed alkali metal effect, but a detailed analysis of the nearest neighbor environment of the glass former using spin-Hamiltonian parameters was elusive. In this study we have prepared a series of vanadate glasses having general formula (mol %) 40 V2O5-30BaF(2)-(30 - x)LiF-xRbF with x = 5, 10, 15, 20, 25, and 30. Spin-Hamiltonian parameters of V4+ ions were extracted by simulating and fitting to the experimental spectra using EasySpin. From the analysis of these parameters it is observed that the replacement of lithium ions by rubidium ions follows a ``preferential substitution model''. Using this proposed model, we were able to account for the observed variation in the ratio of the g parameter, which goes through a maximum. This reflects an asymmetric to symmetric changeover of. the alkali metal ion environment around the vanadium site. Further, this model also accounts for the variation in oxidation state of vanadium ion, which was confirmed from the variation in signal intensity of EPR spectra.
Resumo:
Micro-Raman studies are conducted on as-quenched and annealed Ge15Te80 -_xIn5Agx glasses to probe the structural network and its evolution with composition. These studies reveal the presence of tetrahedral GeTe4 structural units in as-quenched samples. Specific signatures of the intermediate phase (IP) are observed in the composition dependence of Raman frequencies and corresponding intensities of different modes in the composition range, 8 <= x <= 16. In addition, the Raman peak positions are found to shift with silver doping. Apart from the Raman results, the compositional dependence of density, molar volume and thermal diffusivity, observed in the present study, confirms the presence of the intermediate phase. In thermally annealed samples, a unique variation of Raman wave-numbers in the intermediate region is observed due to the retention of some of the local structure even after the sample is crystallized. The observed Raman peaks are attributed to crystalline tellurium and silver lattice vibrational modes. Based on our present and earlier studies, we propose the occurrence of three thresholds in Ge15Te80 - xIn5Agx glasses, namely percolation of rigidity, percolation of stress and the onset of chemical phase separation on a nanoscale at 8%, 16% and 20% of silver concentration respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Bulk Ge15Te85-xIn5Agx glasses are shown to exhibit electrical switching with switching/threshold voltages in the range of 70-120V for a sample thickness of 0.3 mm. Further, the samples exhibit threshold or memory behavior depending on the ON state current. The compositional studies confirm the presence of an intermediate phase in the range 8 <= x <= 16, revealed earlier by thermal studies. Further, SET-RESET studies have been performed by these glasses using a triangular pulse of 6 mA amplitude (for SET) and 21 mA amplitude (for RESET). Raman studies of the samples after the SET and RESET operations reveal that the SET state is a crystalline phase which is obtained by thermal annealing and the RESET state is the glassy state, similar to the as-quenched samples. It is interesting to note that the samples in the intermediate phase, especially compositions at x = 10, 12, and 14 withstand more set-reset cycles. This indicates compositions in the intermediate phase are better suited for phase change memory applications. (C) 2014 AIP Publishing LLC.
Resumo:
Transparent glasses in CaO-Bi2O3-B2O3 system were fabricated via the conventional melt-quenching technique. X-ray powder diffraction (XRD) and differential thermal analysis (DTA) carried out on the as-quenched samples confirmed their amorphous and glassy nature respectively. The surface crystallization behaviour of these glasses with and without ultrasonic surface treatment (UST) was monitored using XRD, optical microscopy and scanning electron microscopy (SEM). The volume fraction, depth of crystallization and the (001) orientation factor for the heat treated samples with and without UST were compared. The ultrasonically-treated samples on subsequent heat treatment were found to crystallize at lower temperatures associated with the highest degree of orientation factor (0.95) in contrast with those of non-UST samples. These surface crystallized glasses were found to exhibit nonlinear optical behaviour emitting green light (532 nm) when they were exposed to the infrared radiation (1064 nm) using Nd:YAG laser.
Resumo:
The variation of electrical resistivity in the system of glasses Ge17Te83-xTlx, with (1 <= x <= 13), has been studied as a function of high pressure for pressures up to 10 GPa. It is found that the normalized electrical resistivity decreases continuously with the increase in pressure and shows a sudden drop at a particular pressure (transition pressure), indicating the presence of a transition from semiconductor to near-metallic at these pressures which are in the range 3.0-5.0 GPa. This transition pressure is seen to decrease with the increase in the percentage content of thallium due to increasing metallicity of the thallium. The transition is reversible under application of pressure and X-ray diffraction of samples recovered after pressurization show that they remain amorphous after undergoing a pressurization decompression cycle.
Resumo:
Experimental studies and atomistic simulations have shown that brittle metallic glasses fail by a cavitation mechanism whose origin has been traced to the presence of intrinsic atomic density fluctuations which give rise to weak zones with reduced yield strength. It has been shown recently through continuum analysis that the presence of these zones can lower the cavitation stress considerably under equibiaxial loading. The objective of the present work is to study the effect of the applied stress state on the cavitation behavior of such a heterogeneous plastic solid with distributed weak zones. To this end, 2D plane strain finite element simulations are performed by subjecting a unit cell containing a weak zone to different (biaxiality) stress ratios. The volume fraction and yield strength of the weak zone are varied over a wide range. The results show that unlike in a homogeneous plastic solid, the cavitation stress of the heterogeneous aggregate does not reduce appreciably as the stress ratio decreases from unity when the yield strength of the weak zone is low. It is found that a non-dimensional parameter characterizing the stress state prevailing in the weak zone and its yield properties uniquely control the cavitation stress. The nature of cavitation bifurcation may change from unstable bifurcation to the left at sufficiently low stress ratio to one involving snap cavitation at high stress ratio. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We report a direct correlation between dissimilar ion pair formation and alkali ion transport in soda-lime silicate glasses established via broad band conductivity spectroscopy and local structural probe techniques. The combined Raman and Nuclear Magnetic Resonance (NMR) spectroscopy techniques on these glasses reveal the coexistence of different anionic species and the prevalence of Na+-Ca2+ dissimilar pairs as well as their distributions. The spectroscopic results further confirm the formation of dissimilar pairs atomistically, where it increases with increasing alkaline-earth oxide content These results, are the manifestation of local structural changes in the silicate network with composition which give rise to different environments into which the alkali ions hop. The Na+ ion mobility varies inversely with dissimilar pair formation, i.e. it decreases with increase of non-random formation of dissimilar pairs. Remarkably, we found that increased degree of non-randomness leads to temperature dependent variation in number density of sodium ions. Furthermore, the present study provides the strong link between the dynamics of the alkali ions and different sites associated with it in soda-lime silicate glasses. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Waveguides have been fabricated on melt-quenched, bulk chalcogenide glasses using the femto-second laser inscription technique at low repetition rates in the single scan regime. The inscribed waveguides have been characterized by butt-coupling method and the diameter of the waveguide calculated using the mode-field image of the waveguide. The waveguide cross-section symmetry is analyzed using the heat diffusion model by relating the energy and translation speed of the laser. The net-fluence and symmetry of the waveguides are correlated based on the theoretical values and experimental results of guiding cross-section.