247 resultados para fixed-point arithmetic
Resumo:
Introduction of processor based instruments in power systems is resulting in the rapid growth of the measured data volume. The present practice in most of the utilities is to store only some of the important data in a retrievable fashion for a limited period. Subsequently even this data is either deleted or stored in some back up devices. The investigations presented here explore the application of lossless data compression techniques for the purpose of archiving all the operational data - so that they can be put to more effective use. Four arithmetic coding methods suitably modified for handling power system steady state operational data are proposed here. The performance of the proposed methods are evaluated using actual data pertaining to the Southern Regional Grid of India. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Sum rules constraining the R-current spectral densities are derived holographically for the case of D3-branes, M2-branes and M5-branes all at finite chemical potentials. In each of the cases the sum rule relates a certain integral of the spectral density over the frequency to terms which depend both on long distance physics, hydrodynamics and short distance physics of the theory. The terms which which depend on the short distance physics result from the presence of certain chiral primaries in the OPE of two it-currents which are turned on at finite chemical potential. Since these sum rules contain information of the OPE they provide an alternate method to obtain the structure constants of the two R-currents and the chiral primary. As a consistency check we show that the 3 point function derived from the sum rule precisely matches with that obtained using Witten diagrams.
Resumo:
Using the spectral multiplicities of the standard torus, we endow the Laplace eigenspaces with Gaussian probability measures. This induces a notion of random Gaussian Laplace eigenfunctions on the torus (''arithmetic random waves''). We study the distribution of the nodal length of random eigenfunctions for large eigenvalues, and our primary result is that the asymptotics for the variance is nonuniversal. Our result is intimately related to the arithmetic of lattice points lying on a circle with radius corresponding to the energy.
Resumo:
Savitzky-Golay (S-G) filters are finite impulse response lowpass filters obtained while smoothing data using a local least-squares (LS) polynomial approximation. Savitzky and Golay proved in their hallmark paper that local LS fitting of polynomials and their evaluation at the mid-point of the approximation interval is equivalent to filtering with a fixed impulse response. The problem that we address here is, ``how to choose a pointwise minimum mean squared error (MMSE) S-G filter length or order for smoothing, while preserving the temporal structure of a time-varying signal.'' We solve the bias-variance tradeoff involved in the MMSE optimization using Stein's unbiased risk estimator (SURE). We observe that the 3-dB cutoff frequency of the SURE-optimal S-G filter is higher where the signal varies fast locally, and vice versa, essentially enabling us to suitably trade off the bias and variance, thereby resulting in near-MMSE performance. At low signal-to-noise ratios (SNRs), it is seen that the adaptive filter length algorithm performance improves by incorporating a regularization term in the SURE objective function. We consider the algorithm performance on real-world electrocardiogram (ECG) signals. The results exhibit considerable SNR improvement. Noise performance analysis shows that the proposed algorithms are comparable, and in some cases, better than some standard denoising techniques available in the literature.
Resumo:
The n-interior point variant of the Erdos-Szekeres problem is to show the following: For any n, n-1, every point set in the plane with sufficient number of interior points contains a convex polygon containing exactly n-interior points. This has been proved only for n-3. In this paper, we prove it for pointsets having atmost logarithmic number of convex layers. We also show that any pointset containing atleast n interior points, there exists a 2-convex polygon that contains exactly n-interior points.
Resumo:
A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such that G is (strongly) rainbow connected. In this paper we study the rainbow connectivity problem and the strong rainbow connectivity problem from a computational point of view. Our main results can be summarised as below: 1) For every fixed k >= 3, it is NP-Complete to decide whether src(G) <= k even when the graph G is bipartite. 2) For every fixed odd k >= 3, it is NP-Complete to decide whether rc(G) <= k. This resolves one of the open problems posed by Chakraborty et al. (J. Comb. Opt., 2011) where they prove the hardness for the even case. 3) The following problem is fixed parameter tractable: Given a graph G, determine the maximum number of pairs of vertices that can be rainbow connected using two colors. 4) For a directed graph G, it is NP-Complete to decide whether rc(G) <= 2.
Resumo:
This paper investigates a new approach for point matching in multi-sensor satellite images. The feature points are matched using multi-objective optimization (angle criterion and distance condition) based on Genetic Algorithm (GA). This optimization process is more efficient as it considers both the angle criterion and distance condition to incorporate multi-objective switching in the fitness function. This optimization process helps in matching three corresponding corner points detected in the reference and sensed image and thereby using the affine transformation, the sensed image is aligned with the reference image. From the results obtained, the performance of the image registration is evaluated and it is concluded that the proposed approach is efficient.
Resumo:
In a cooperative system with an amplify-and-forward relay, the cascaded channel training protocol enables the destination to estimate the source-destination channel gain and the product of the source-relay (SR) and relay-destination (RD) channel gains using only two pilot transmissions from the source. Notably, the destination does not require a separate estimate of the SR channel. We develop a new expression for the symbol error probability (SEP) of AF relaying when imperfect channel state information (CSI) is acquired using the above training protocol. A tight SEP upper bound is also derived; it shows that full diversity is achieved, albeit at a high signal-to-noise ratio (SNR). Our analysis uses fewer simplifying assumptions, and leads to expressions that are accurate even at low SNRs and are different from those in the literature. For instance, it does not approximate the estimate of the product of SR and RD channel gains by the product of the estimates of the SR and RD channel gains. We show that cascaded channel estimation often outperforms a channel estimation protocol that incurs a greater training overhead by forwarding a quantized estimate of the SR channel gain to the destination. The extent of pilot power boosting, if allowed, that is required to improve performance is also quantified.
Resumo:
Super-resolution imaging techniques are of paramount interest for applications in bioimaging and fluorescence microscopy. Recent advances in bioimaging demand application-tailored point spread functions. Here, we present some approaches for generating application-tailored point spread functions along with fast imaging capabilities. Aperture engineering techniques provide interesting solutions for obtaining desired system point spread functions. Specially designed spatial filters—realized by optical mask—are outlined both in a single-lens and 4Pi configuration. Applications include depth imaging, multifocal imaging, and super-resolution imaging. Such an approach is suitable for fruitful integration with most existing state-of-art imaging microscopy modalities.
Resumo:
This paper presents a unified framework using the unit cube for measurement, representation and usage of the range of motion (ROM) of body joints with multiple degrees of freedom (d.o.f) to be used for digital human models (DHM). Traditional goniometry needs skill and kn owledge; it is intrusive and has limited applicability for multi-d.o.f. joints. Measurements using motion capture systems often involve complicated mathematics which itself need validation. In this paper we use change of orientation as the measure of rotation; this definition does not require the identification of any fixed axis of rotation. A two-d.o.f. joint ROM can be represented as a Gaussian map. Spherical polygon representation of ROM, though popular, remains inaccurate, vulnerable due to singularities on parametric sphere and difficult to use for point classification. The unit cube representation overcomes these difficulties. In the work presented here, electromagnetic trackers have been effectively used for measuring the relative orientation of a body segment of interest with respect to another body segment. The orientation is then mapped on a surface gridded cube. As the body segment is moved, the grid cells visited are identified and visualized. Using the visual display as a feedback, the subject is instructed to cover as many grid cells as he can. In this way we get a connected patch of contiguous grid cells. The boundary of this patch represents the active ROM of the concerned joint. The tracker data is converted into the motion of a direction aligned with the axis of the segment and a rotation about this axis later on. The direction identifies the grid cells on the cube and rotation about the axis is represented as a range and visualized using color codes. Thus the present methodology provides a simple, intuitive and accura te determination and representation of up to 3 d.o.f. joints. Basic results are presented for the shoulder. The measurement scheme to be used for wrist and neck, and approach for estimation of the statistical distribution of ROM for a given population are also discussed.
Resumo:
The performance analysis of adaptive physical layer network-coded two-way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. The deep channel fade conditions which occur at the relay referred as the singular fade states fall in the following two classes: (i) removable and (ii) non-removable singular fade states. With every singular fade state, we associate an error probability that the relay transmits a wrong network-coded symbol during the BC phase. It is shown that adaptive network coding provides a coding gain over fixed network coding, by making the error probabilities associated with the removable singular fade states contributing to the average Symbol Error Rate (SER) fall as SNR-2 instead of SNR-1. A high SNR upper-bound on the average end-to-end SER for the adaptive network coding scheme is derived, for a Rician fading scenario, which is found to be tight through simulations. Specifically, it is shown that for the adaptive network coding scheme, the probability that the relay node transmits a wrong network-coded symbol is upper-bounded by twice the average SER of a point-to-point fading channel, at high SNR. Also, it is shown that in a Rician fading scenario, it suffices to remove the effect of only those singular fade states which contribute dominantly to the average SER.
Resumo:
We consider a discrete time system with packets arriving randomly at rate lambda per slot to a fading point-to-point link, for which the transmitter can control the number of packets served in a slot by varying the transmit power. We provide an asymptotic characterization of the minimum average delay of the packets, when average transmitter power is a small positive quantity V more than the minimum average power required for queue stability. We show that the minimum average delay will grow either as log (1/V) or 1/V when V down arrow 0, for certain sets of values of lambda. These sets are determined by the distribution of fading gain, the maximum number of packets which can be transmitted in a slot, and the assumed transmit power function, as a function of the fading gain and the number of packets transmitted. We identify a case where the above behaviour of the tradeoff differs from that obtained from a previously considered model, in which the random queue length process is assumed to evolve on the non-negative real line.
Resumo:
We study the process of bound state formation in a D-brane collision. We consider two mechanisms for bound state formation. The first, operative at weak coupling in the worldvolume gauge theory, is pair creation of W-bosons. The second, operative at strong coupling, corresponds to formation of a large black hole in the dual supergravity. These two processes agree qualitatively at intermediate coupling, in accord with the correspondence principle of Horowitz and Polchinski. We show that the size of the bound state and time scale for formation of a bound state agree at the correspondence point. The time scale involves matching a parametric resonance in the gauge theory to a quasinormal mode in supergravity.
Resumo:
We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of s -, p - and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space). Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
In the present study, a novel air-assisted impinging jet atomization is demonstrated. A configuration in which a gas jet is directed on to the impinging point of two liquid jets is used to improve the atomization. The effect of liquid properties such as viscosity and surface tension, angle between liquid jets and gas injection orifice diameter on spray characteristics has been experimentally studied. Backlit imaging and particle/droplet imaging and analysis techniques are utilized to characterize the sprays. The experimental results indicate that the effect of liquid viscosity is significant on the liquid sheet break up formed by the impinging jets. However, surface tension does not affect the spray structure significantly in this mode of atomization. At low liquid jet velocity, the prompt mode of atomization is observed where as atomization occurs in classical mode at higher liquid jet velocity. Results showed that variation in the angle between liquid jets do not affect the breakup phenomenon significantly. The spray angle is computed by finding the angle between the lines joining the impinging point and spray edge at an axial distance of 15 mm downstream of the impinging point from the ensemble-averaged data over 100 spray images. It was observed that effect of liquid jets impinging angle on the spray angle is higher at higher liquid velocity. Higher viscosity liquids exhibit lower spray angles. Droplet size measurements indicate a radial variation in the spray. An overall Sauter Mean Diameter (SMD) value is obtained by combining the droplet statistics at all radial locations at a fixed axial location. A very interesting trend is that the SMD is constant beyond a critical Gas to Liquid Ratio (GLR) and momentum ratio for a large variation in liquid viscosity and surface tension. This observation has important ramifications for fuel flexible systems. (C) 2013 Elsevier Ltd. All rights reserved.