431 resultados para conformational properties
Resumo:
Vegetable oils are a potential source of base oils for biodegradable lubricants, with limited oxidative stability. This study focuses on the effect of long-term ageing and the influence of oxidation products on the boundary lubrication performance of coconut and soy bean oils, by subjecting them to accelerated ageing in a dark oven at elevated temperature. The samples were collected at regular intervals and analysed for the changes in viscosity, percentage of free fatty acid and peroxide number compared to fresh oil samples. The boundary lubrication properties of these samples were evaluated using a four-ball tester. Increased wear observed with aged oil samples was linked to the destruction of triglyceride structure and formation of peroxides. The difference in the wear properties of soy bean oil to coconut oil was accounted by its high content of unsaturated fatty acids and its susceptibility to undergo oxidation. It was concluded that the coconut oil can perform as a better lubricant and has got a better storage life compared to soy bean oil.
Resumo:
Nanoparticles of Fe3O4 were synthesized by co-precipitation in an aqueous solution containing ferrous and ferric salts (1:2) at varying pH with ammonia as a base. It was found that the value of pH influences the reaction mechanism for the formation of Fe3O4. Furthermore, the addition of mercaptoethanol significantly reduced the crystalline size of Fe3O4 nanoparticles from 15.03 to 8.02 nm. X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles were epsilon-Fe2O3 or Fe3O4 phase. To further prove the composition of the product, as-prepared Fe3O4 were examined by X-rayphotoelectron spectroscopy (XPS). Magnetic properties of the obtained particles were determined by vibrating sample magnetometer (VSM). Further analysis of the X-ray studies shows that while maintaining a pH value of 6 and 9 in a solution containing iron salts II and III ions produces epsilon-Fe2O3. Whereas a pH value of 11 produces magnetite (Fe3O4) phase. All of these results show that the pH has a major role in the observed phase formation of (Fe3O4) nanoparticles.
Resumo:
Histones H1a and H1t are two major linker histone variants present at the pachytene interval of mammalian spermatogenesis. The DNA- and chromatin-condensing properties of these two variants isolated from rat testes were studied and compared with those from rat liver. For this purpose, the histone H1 subtypes were purified from the respective tissues using bath acid and salt extraction procedures, Circular dichroism studies revealed that acid exposure during isolation affects the alpha-helical structure of both the globular domain (in the presence of 1 M NaCl) and the C-terminal lambda-tail (in the presence of 60% trifluoroethanol). The condensation of rat oligonucleosomal DNA, as measured by circular dichroism spectroscopy, by the salt-extracted histone H1 was at least 10 times more efficient than condensation by the acid-extracted histone H1. A site size of 16-20 base pairs was calculated for the salt-extracted histone H1. Among the different histone H1 subtypes, somatic histone H1bdec had the highest DNA-condensing property, followed by histone H1a and histone H1t. All the salt-extracted histones condensed rat oligonucleosomal DNA more efficiently than linear pBR-322 DNA, Histones H1bdec and H1a condensed histone H1-depleted chromatin, prepared from rat liver nuclei, with relatively equal efficiency. On the other hand, there was no condensation of histone H1-depleted chromatin with the testes specific histone H1t. A comparison of the amino acid sequences of histone H1d (rat) and histone H1t (rat) revealed several interesting differences in the occurrence of DNA-binding motifs at the C-terminus. A striking observation is the presence of a direct repeat of an octapeptide motif K(A)T(S)PKKA(S)K(T)K(A) in histone H1d that is absent in histone H1t.
Resumo:
Histones H1a and H1t are two major linker histone variants present at the pachytene interval of mammalian spermatogenesis. The DNA- and chromatin-condensing properties of these two variants isolated from rat testes were studied and compared with those from rat liver. For this purpose, the histone H1 subtypes were purified from the respective tissues using bath acid and salt extraction procedures, Circular dichroism studies revealed that acid exposure during isolation affects the alpha-helical structure of both the globular domain (in the presence of 1 M NaCl) and the C-terminal lambda-tail (in the presence of 60% trifluoroethanol). The condensation of rat oligonucleosomal DNA, as measured by circular dichroism spectroscopy, by the salt-extracted histone H1 was at least 10 times more efficient than condensation by the acid-extracted histone H1. A site size of 16-20 base pairs was calculated for the salt-extracted histone H1. Among the different histone H1 subtypes, somatic histone H1bdec had the highest DNA-condensing property, followed by histone H1a and histone H1t. All the salt-extracted histones condensed rat oligonucleosomal DNA more efficiently than linear pBR-322 DNA, Histones H1bdec and H1a condensed histone H1-depleted chromatin, prepared from rat liver nuclei, with relatively equal efficiency. On the other hand, there was no condensation of histone H1-depleted chromatin with the testes specific histone H1t. A comparison of the amino acid sequences of histone H1d (rat) and histone H1t (rat) revealed several interesting differences in the occurrence of DNA-binding motifs at the C-terminus. A striking observation is the presence of a direct repeat of an octapeptide motif K(A)T(S)PKKA(S)K(T)K(A) in histone H1d that is absent in histone H1t.
Resumo:
Alcaligenes eutrophus utilizing nerolidol, a sesquiterpene alcohol,as the sole source of carbon contains an inducible NAD(P)+-linked secondary alcohol dehydrogenase (SADH). The enzyme was purified to homogeneity by a combination of salt precipitation, ion exchange and affinity matri chromatographies. The apparent molecular mass of the enzyme was estimated to be 139 KDa with four identical subunits of 38.5 KDa. The enzyme carried out both oxidation and reduction reactions. At pH 5.5, enzyme catalyzed the stereospecific reduction of prochiral ketones to secondary alcohols. The pH optimum for the oxidation reaction was 9.5. NADP+ and NADPH were respectively preferred over NAD+ and NADH for oxidation and reduction reactions. Some of the properties of this enzyme were found to be significantly different from those thus far described.
Resumo:
Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.
Resumo:
It has been found experimentally that the results related to the collective field emission performance of carbon nanotube (CNT) arrays show variability. The emission performance depends on the electronic structure of CNTs (especially their tips). Due to limitations in the synthesis process, production of highly pure and defect free CNTs is very difficult. The presence of defects and impurities affects the electronic structure of CNTs. Therefore, it is essential to analyze the effect of defects on the electronic structure, and hence, the field emission current. In this paper, we develop a modeling approach for evaluating the effect of defects and impurities on the overall field emission performance of a CNT array. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects. Then, we incorporate the vacancy defects and charge impurity effects in our Green's function based approach. Simulation results indicate decrease in average current due to the presence of such defects and impurities.
Resumo:
Oxyglycals, derived from lactose and maltose, were expanded to trisaccharides through a ring expansion method. Trisaccharides with 6-7-5 and 6-7-6 ring sizes were prepared through the ring expansion method, with high diastereoselectivities, in each step of their synthesis. The NOE and ROESY NMR spectroscopies were used to assess the dipolar Couplings within the trisaccharide. A computational study was undertaken, from which low energy conformations, as well as, dihedral angles that define the glycosidic linkages were identified.
Resumo:
Aurivillus intergrowth Bi4Ti3O12-5BiFeO(3) was demonstrated to be ferroelectric that evoked the possibility of achieving high temperature magnetoelectric property in this family of compounds. X-ray diffraction studies confirmed its structure to be orthorhombic [Fmm2; a=5.5061(11) A degrees, b=5.4857(7) A degrees, c=65.742(12) A degrees]. However, transmission electron microscopy established the random incidence of intergrowth at nanoscale corresponding to n=6 and n=7 members of the Aurivillius family. Diffuse ferroelectric orthorhombic to paraelectric tetragonal phase transition around 857 K was confirmed by dielectric and high temperature x-ray diffraction studies. Polarization versus electric field hysteresis loops associated with 2P(r) of 5.2 mu C/cm(2) and coercive field of 42 kV/cm were obtained at 300 K.
Resumo:
The present paper records the results of a case study on the impact of an extensive grassland fire on the physical and optical properties of aerosols at a semi-arid station in southern India for the first time from ground based measurements using a MICROTOPS-II sunphotometer, an aethalometer and a quartz crystal microbalance impactor (QCM). Observations revealed a substantial increase in aerosol optical depth (AOD) at all wavelengths during burning days compared to normal days. High AOD values observed at shorter wavelengths suggest the dominance of accumulation mode particle loading over the study area. Daily mean aerosol size spectra shows, most of the time, power-law distribution. To characterize AOD, the Angstrom parameters (i.e., alpha and beta) were used. Wavelength exponent (1.38) and turbidity coefficient (0.21) are high during burning days compared to normal days, thereby suggesting an increase in accumulation mode particle loading. Aerosol size distribution suggested dominance of accumulation mode particle loading during burning days compared to normal days. A significant positive correlation was observed between AOD at 500 mn and water vapour and negative correlation between AOD at 500 nm and wind speed for burning and non-burning days. Diurnal variations of black carbon (BC) aerosol mass concentrations increased by a factor of similar to 2 in the morning and afternoon hours during burning period compared to normal days.
Resumo:
This letter explores the structural behavior of nanocrystalline tin mono sulfide (SnS) structures with respect to temperature (100-600 K). These studies emphasize that the structural properties of SnS nanocrystalline structures depend on the surrounding temperature. The lattice parameters of SnS nanocrystals slightly varied like their microstructures with the increase of temperature. These changes strongly influence the optical properties of SnS nanostructures. On the other hand, the structures exhibited higher strain (similar to 0.44%) than that of microstructured (0.3%) and bulk (0.12%) counterparts. The observed results are discussed under the light of existing concepts and reported.
Resumo:
Boron- and nitrogen-doped graphenes are are prepared by the arc discharge between carbon electrodes or by the transformation of nanodiamond under appropriate atmospheres. Using a combination of experiment and theories based on first principles, systematic changes in the carrier-concentration and electronic structure of the doped graphenes are demonstrated. Stiffening of the G-band mode and intensification of the defect-related D-band in the Raman spectra are also observed.
Resumo:
The influence of atmospheric aerosols on Earth's radiation budget and hence climate, though well recognized and extensively investigated in recent years, remains largely uncertain mainly because of the large spatio-temporal heterogeneity and the lack of data with adequate resolution. To characterize this diversity, a major multi-platform field campaign ICARB (Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out during the pre-monsoon period of 2006 over the Indian landmass and surrounding oceans, which was the biggest such campaign ever conducted over this region. Based on the extensive and concurrent measurements of the optical and physical properties of atmospheric aerosols during ICARB, the spatial distribution of aerosol radiative forcing was estimated over the entire Bay of Bengal (BoB), northern Indian Ocean and Arabian Sea (AS) as well as large spatial variations within these regions. Besides being considerably lower than the mean values reported earlier for this region, our studies have revealed large differences in the forcing components between the BoB and the AS. While the regionally averaged aerosol-induced atmospheric forcing efficiency was 31 +/- 6 W m(-2) tau(-1) for the BoB, it was only similar to 18 +/- 7 W m(-2) tau(-1) for the AS. Airborne measurements revealed the presence of strong, elevated aerosol layers even over the oceans, leading to vertical structures in the atmospheric forcing, resulting in significant warming in the lower troposphere. These observations suggest serious climate implications and raise issues ranging from the impact of aerosols on vertical thermal structure of the atmospheric and hence cloud formation processes to monsoon circulation.
Resumo:
The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of llostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side-chains and then to compute the ligand-induced population shift. Finally, we obtain the free-energy landscape of the protein in equilibrium, characterizing the free-energy minima accessed by the protein complexes. We have chosen human tryptophanyl-tRNA synthetase (hTrpRS), a protein esponsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure.
Resumo:
We have used circular dichroism as a probe to characterize the solution conformational changes in RecA protein upon binding to DNA. This approach revealed that RecA protein acquires significant amounts of alpha-helix upon interaction with DNA. These observations, consistent with the data from crystal structure (Story, R. M., Weber, I., and Steitz, T. (1992) Nature 355, 318-325), support the notion that some basic domains including the DNA binding motifs of RecA protein are unstructured and might contribute to the formation of alpha-helix. A comparison of nucleoprotein filaments comprised of RecA protein and a variety of DNA substrates revealed important structural heterogeneity. The most significant difference was observed with poly(dG). poly(dC) and related polymers, rich in GC sequences, which induced minimal amounts of alpha-helix in RecA protein. The magnitude of induction of alpha-helix in RecA protein, which occurred concomitant with the production of ternary complexes, was 2-fold higher with homologous than heterologous duplex DNA. Most importantly, the stimulation of ATP hydrolysis by high salt coincided with that of the induction of alpha-helix in RecA protein. These conformational differences provide a basis for thinking about the biochemical and structural transitions that RecA protein experiences during the formal steps of presynapsis, recognition, and alignment of homologous sequences.