203 resultados para bile acids
Resumo:
The manuscript reports two novel ternary ion-pair complexes, which serve as chiral solvating agents, for enantiodiscrimination of secondary alcohols and carboxylic acids. The protocol for discrimination of secondary alcohols is designed by using one equivalent mixture each of enantiopure mandelic acid, 4-dimethylaminopyridine (DMAP) and a chiral alcohol. For discrimination of carboxylic acids, the ternary complex is obtained by one equivalent mixture each of enantiopure chiral alcohol, DMAP and a carboxylic acid. The designed protocols also permit accurate measurement of enantiomeric composition. Copyright (C) 2014 John Wiley & Sons, Ltd.
Resumo:
Estimation of the dissociation constant, or pK(a), of weak acids continues to be a central goal in theoretical chemistry. Here we show that ab initio Car-Parrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free energy profile of the dissociation reaction can provide reasonable estimates of the successive pK(a) values of polyprotic acids. We use the distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic group as the collective variable to explore the free energy profile of the dissociation process. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. Two distinct minima corresponding to the dissociated and un-dissociated states of the acid are observed and the difference in their free energy values provides the estimate for pK(a), the acid dissociation constant. We show that the method predicts the pK(a) value of benzoic acid in good agreement with experiment and then show using phthalic acid (benzene dicarboxylic acid) as a test system that both the first and second pK(a) values as well, as the subtle difference in their values for different isomers can be predicted in reasonable agreement with experimental data.
Resumo:
The crystal structures of nine peptides containing gamma(4)Val and gamma(4)Leu are described. The short sequences Boc-gamma(4)(R)Val](2)-OMe 1, Boc-gamma(4)(R)Val](3)-NHMe 2 and Boc-gamma(4)(S)Val-gamma(4)(R)Val-OMe 3 adopt extended apolar, sheet like structures. The tetrapeptide Boc-gamma(4)(R)Val](4)-OMe 4 adopts an extended conformation, in contrast to the folded C-14 helical structure determined previously for Boc-gamma(4)(R)Leu](4)-OMe. The hybrid alpha gamma sequence Boc-Ala-gamma(4)(R)Leu](2)-OMe 5 adopts an S-shaped structure devoid of intramolecular hydrogen bonds, with both alpha residues adopting local helical conformations. In sharp contrast, the tetrapeptides Boc-Aib-gamma(4)(S)Leu](2)-OMe 6 and Boc-Leu-gamma(4)(R)Leu](2)-OMe 7 adopt folded structures stabilized by two successive C-12 hydrogen bonds. gamma(4)Val residues have also been incorporated into the strand segments of a crystalline octapeptide, Boc-Leu-gamma(4)(R)Val-Val-(D)Pro-Gly-Leu-gamma(4)(R)Val-Val-OMe 8. The gamma gamma delta gamma tetrapeptide containing gamma(4)Val and delta(5)Leu residues adopts an extended sheet like structure. The hydrogen bonding pattern at gamma residues corresponds to an apolar sheet, while a polar sheet is observed at the lone delta residue. The transition between folded and extended structures at gamma residues involves a change of the torsion angle from the gauche to the trans conformation about the C-beta-C-alpha bond.
Resumo:
Synthesis and crystal structures of three porphyrin-based polyfunctional Lewis acids 1-3 are reported. Intermolecular HgClHgCl (linear and -type) interactions in the solid state of the peripherally ArHgCl-decorated compound 3 lead to a fascinating 3D supramolecular architecture. Compound3 shows a selective fluorescence quenching response to picric acid and discriminates other nitroaromatic-based explosives. For the first time, an electron-deficient polyfunctional Lewis acid is shown to be useful for the selective detection and discrimination of nitroaromatic explosives. The Stern-Volmer quenching constant and detection limits of compound3 for picric acid are the best among the reported small-molecular receptors for nitroaromatic explosives. The electronic structure, Lewis acidity, and selective sensing characteristics of 3 are well corroborated by DFT calculations.
Resumo:
A rapid and the simple chiral derivatizing protocol involving the coupling of 2-formylphenylboronic acid and an optically pure 1,1-binaphthalene]-2,2-diamine is introduced for the accurate determination of the enantiopurity of hydroxy acids and their derivatives, possessing one or two optically active centers, using H-1 NMR spectroscopy.
Resumo:
Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation deprotonation reaction of the 20 canonical alpha amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metad-ynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pK(a) values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pK(a) values with a mean relative error, with respect to experimental results, of 0.2 pK(a) units.
Resumo:
The variation of hardness as a function of the number of carbon atoms in alpha,omega-alkanedicarboxylic acids, CNH2N-2O4 (4 <= N <= 9), was examined by recourse to nanoindentation on the major faces of single crystals. Hardness exhibits odd-even alternation, with the odd acids being softer and the even ones harder; the differences decrease with increasing chain length. These variations are similar to those seen for other mechanical, physical, and thermal properties of these diacids. The softness of odd acids is rationalized due to strained molecular conformations in them, which facilitate easier plastic deformation. Relationships between structural features, such as interplanar spacing, interlayer separation distance, molecular chain length, and signatures of the nanoindentation responses, namely, discrete displacement bursts, were also examined. Shear sliding of molecular layers past each other during indentation is key to the mechanism for plastic deformation in these organic crystals.
Resumo:
The discovery of microRNAs (miRNAs) has added a new dimension to the gene regulatory networks, making aberrantly expressed miRNAs as therapeutically important targets. Small molecules that can selectively target and modulate miRNA levels can thus serve as lead structures. Cationic cyclic peptides containing sugar amino acids represent a new class of small molecules that can target miRNA selectively. Upon treatment of these small molecules in breast cancer cell line, we profiled 96 therapeutically important miRNAs associated with cancer and observed that these peptides can selectively target paralogous miRNAs of the same seed family. This selective inhibition is of prime significance in cases when miRNAs of the same family have tissue-specific expression and perform different functions. During these conditions, targeting an entire miRNA family could lead to undesired adverse effects. The selective targeting is attributable to the difference in the three-dimensional structures of precursor miRNAs. Hence, the core structure of these peptides can be used as a scaffold for designing more potent inhibitors of miRNA maturation and hence function.