306 resultados para atom-solid interactions
Resumo:
The molecular conformation of the title compound, C20H17N3, is stabilized by an intramolecular C-H center dot center dot center dot N interaction. The crystal structure shows intermolecular C-H center dot center dot center dot pi interactions. The dihedral angle between the isoquinoline unit and the phenyl ring is 11.42 (1)degrees whereas the isoquinoline unit and the pendent dimethyl pryrazole unit form a dihedral angle of 50.1 (4)degrees. Furthermore, the angle between the mean plane of the phenyl ring and the dimethyl pyrazole unit is 47.3 (6)degrees.
Resumo:
Oxyphenbutazone, C19H20N203, a metabolite and perhaps the active form of phenylbutazone, is a widely used non-narcotic analgesic and anti-inflammatory pyrazolidinedione derivative. The monohydrate of the compound crystallizes in the triclinic space group Pi with two molecules in a unit cell of dimensions a -- 9.491 (4), b = 10.261 (5), c = 11.036 (3)A and ¢~ = 72.2 (1), fl = 64.3 (1), 7 = 73.0 (1) °. The structure was solved by direct methods and refined to an R value of 0.107 for 1498 observed reflections. The butyl group in the molecule is disordered. The hydroxyl group occupies two sites with unequal occupancies. On account of the asymmetry at the two N atoms and one of the C atoms in the central five-membered ring, the molecule can exist in eight isomeric states, of which four are sterically unfavourable. The disorder in the position of the hydroxyl group can be readily explained on the basis of the existence, with unequal abundances, of all four sterically favourable isomers.The bond lengths and angles in the molecule are similar to those in phenylbutazone. The crystal structure is stabilized by van der Waals interactions, and O-H... O hydrogen bonds involving the carbonyl and the hydroxyl groups as well as a water molecule.
Resumo:
The crystal structure of the cobalt( 11) complex with 2'-deoxyinosine 5'-monophosphate (5'- dlMP), [Co(5'-dlMP) (H,0),]-2H20, has been analysed by X-ray diffraction. The complex crystallizes in the space group P2,2,2, with a = 6.877(3), b = 10.904(2), c = 25.421 (6) A, and Z = 4. The structure was solved by the heavy-atom method and refined to an R value of 0.043 using 1 776 unique reflections. The cobalt ion binds only to the 6-oxopurine base of the nucleotide at the N(7) position, the octahedral co-ordination of the metal being completed by five water oxygens. The phosphate oxygens are involved in hydrogen bonding with the co-ordinated water molecules. The structure is closely similar to that of the corresponding ribonucleotide complex. The nucleotide has the energetically preferred conformation: an anti base, a C(3') -endo sugar pucker, and a gauche-gauche conformation about the C(4')-C( 5') bond. The significance of sugar puckering in the monomeric complexes of general formula [ M (5'-nucleotide) (H20),] is explained in terms of the structural requirements for metal-water-phosphate bridging interactions.
Resumo:
Photochemical dimerization of 7-methoxycoumarin occurs in the solid state to give high yields of a syn-head-to-tail dimer although the potentially reactive double bonds are not favourably oriented in the crystal of the monomer.
Resumo:
Single-phase LaNi1-xMnxO3 samples in the compositional range 0
Resumo:
Photochemical transformations of organic solids provide an exciting area of research with new synthetic possibilities. These reactions are generally governed by topochemical factors rather than the normal rules of chemical reactivity. Defects play a crucial role in some of the reactions. Some of the transformations such as the photodimerization of 4, 4'-dimethoxystilbene occur in a single crystal fashion.
Resumo:
It has long been recognized that mast cells occur throughout connective tissues. Histologic studies have revealed that such cells release their granules into the surrounding environment upon exposure to both immunologic and nonimmunologic stimuli. By microscopy these extracellular granules appeared to be phagocytosed by fibroblasts and by blood-borne phagocytic cells as they entered the site of mast cell degranulation. Such in vivo observations led to the suggestion that mast cells both altered connective tissue components and influenced fibroblast function through these discharged granules. Recent in vitro studies using cultured fibroblasts and isolated mast cells and mast cell granules have confirmed both these hypotheses. In addition, such studies have also documented that fibroblasts degrade ingested mast cell granules. Such studies document that a number of critical interactions may occur between mast cells and connective tissue components.
Resumo:
A semi-empirical model is presented for describing the interionic interactions in molten salts using the experimentally available structure data. An extension of Bertaut's method of non-overlapping charges is used to estimate the electrostatic interaction energy in ionic melts. It is shown, in agreement with earlier computer simulation studies, that this energy increases when an ionic salt melts. The repulsion between ions is described using a compressible ion theory which uses structure-independent parameters. The van der Waals interactions and the thermal free energy are also included in the total energy, which is minimised with respect to isostructural volume variations to calculate the equilibrium density. Detailed results are presented for three molten systems, NaCl, CaCl2 and ZnCl2, and are shown to be in satisfactory agreement with experiments. With reliable structural data now being reported for several other molten salts, the present study gains relevance.
Resumo:
CsHaN205, PL a = 6.438 (2), b = 7.486 (3), c = 8.048 (4)A, a = 72.2(1), fl = 80.8(1), y = 76.4 (1) °, D m = 1.65 (1) (flotation), D c = 1.64 Mg m -3, Z = 2. Final R = 0.095 for 1205 observed reflections. The molecule assumes the sterically least favourable conformation with the side chain carboxyl group staggered between the a-carboxyl group and the N atom attached to C '~. The ureido group takes part in two specific interactions involving two nearly parallel hydrogen bonds in one and two convergent hydrogen bonds in the other.
Resumo:
Silane undergoes thermal decomposition on the surface of “phosphorus pentoxide” ( P4O10) into its elements around 200–400°C. The hydrogen formed partially reduces the P4O10 forming lower oxides of phosphorus and water. Elemental silicon is precipitated as reddish-brown solid, which is separated by dissolving out the phosphorus oxides. Silica and disiloxane are not formed in the reaction.
Resumo:
Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro_(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro_(L)Pro_(L)Phe-OMe (2), and Piv-(D)Pro_(L)Pro_(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The C-13 spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C-beta and C-gamma carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all transform across the di-Proline segment. The results are In agreement with the X-ray analysis. Solid state N-15 resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. H-1 chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between H-1-C-13. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.
Resumo:
Ammonium perchlorate-potassium perchlorate mixtures, upon pelletization, form a series of homogeneous solid solutions as manifested by X-ray powder diffractograms. Scanning electron microscopic studies throw light on the mechanism of the solid-solution formation. Solid solutions of ammonium perchlorate-potassium perchlorate have also been obtained by a modified cocrystallization technique. The thermal and combustion behavior of the solid solutions have also been studied, using the DTA technique and the Crawford strand burner.
Resumo:
Photochemical oxidation of 11 diaryl thioketones (1-11) was conducted in the solid state. Quite interestingly, of these only six were oxidized to the corresponding carbonyl compound whereas the rest were photostable. However, in solution all were readily oxidized. The difference in behavior between the thioketones in the solid state has been rationalized on the basis of molecular arrangement in the crystal. X-ray crystal structure analyses of four thioketones were carried out in this connection.