251 resultados para Voronoi Diagram


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a rigidity percolation transition and the onset of yield stress in a dilute aqueous dispersion of graphene oxide platelets (aspect ratio similar to 5000) above a critical volume fraction of 3.75 x 10(-4) with a percolation exponent of 2.4 +/- 0.1. The viscoelastic moduli of the gel at rest measured as a function of time indicate the absence of structural evolution of the 3D percolated network of disks. However a shear-induced aging giving rise to a compact jammed state and shear rejuvenation indicating a homogenous flow is observed when a steady shear stress (sigma) is imposed in creep experiments. We construct a shear diagram (sigma vs. volume fraction phi) and the critical stress above which shear rejuvenation occurs is identified as the yield stress sigma(y) of the gel. The minimum steady state shear rate (gamma) over dot(m) obtained from creep experiments agrees well with the end of the plateau region in a controlled shear rate flow curve, indicating a shear localization below (gamma) over dot(m). A steady state shear banding in the plateau region of the flow curve observed in particle velocimetry measurements in a Couette geometry confirms that the dilute suspensions of GO platelets form a thixotropic yield stress fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase relations in the system Nb-Rh-O at 1223 K were investigated by isothermal equilibration of eleven compositions and analysis of quenched samples using OM, XRD, SEM and EDS. The oxide phase in equilibrium with the alloy changes progressively from NbO to NbO2, NbO2.422 and Nb2O5-x with increasing Rh. Only one ternary oxide NbRhO4 with tetragonal structure (a=0.4708 nm and c=0.3017 nm) was detected. It coexists with Rh and Nb2O5. The standard Gibbs energy of formation of NbRhO4 from its component binary oxides measured using a solid-state electrochemical cell can be represented by the equation; Delta G(f,ox)(o)(J/mol) = -38,350 + 5.818 x T(+/- 96) Constructed on the basis of thermodynamic information of the various alloy and oxide phases are oxygen potential diagram for the system Nb-Rh-O at 1223 K and temperature-composition diagrams at constant partial pressures of oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiferroic materials are characterized by simultaneous magnetic and ferroelectric ordering making them good candidates for magneto-electrical applications. We conducted thermal expansion and magnetostriction measurements in magnetic fields up to 14 T on perovskitic GdMnO3 by highresolution capacitive dilatometry in an effort to determine all longitudinal and transversal components of the magnetostriction tensor. Below the ordering temperature T (N) = 42 K, i.e., within the different complex (incommensurate or complex) antiferromagnetic phases, lattice distortions of up to 100 ppm have been found. Although no change of the lattice symmetry occurs, the measurements reveal strong magneto-structural phenomena, especially in the incommensurate sinusoidal antiferromagnetic phase. A strong anisotropy of the magnetoelastic properties was found, in good agreement with the type and propagation vector of the magnetic structure. We demonstrate that our capacitive dilatometry can detect lattice expansion effects and changes of the dielectric permittivity simultaneously because the sample is housed inside the capacitor. A separation of both effects is possible by shielding the sample. Dielectric transitions could be detected by this method and compared to the critical values of H and T in the magnetic phase diagram. Dielectric changes measured at 1 kHz excitation frequency are detected in GdMnO3 at about 180 K, and between 10 K and 25 K in the canted antiferromagnetic structure which is characterized by a complex magnetic order on both the Gd- and Mn-sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase equilibria in the Cu-rich corner of the ternary system Cu-Al-Sn have been re-investigated. Final equilibrium microstructures of 20 ternary alloy compositions near Cu3Al were used to refine the ternary phase diagram. The microstructures were characterized using optical microscopy (OM), x-ray diffraction (XRD), electron probe microanalysis and transmission electron microscopy. Isothermal sections at 853, 845, 833, 818, 808, 803 and 773 K have been composed. Vertical sections have been drawn at 2 and 3 at% Sn, showing beta(1) as a stable phase. Three-phase fields (alpha + beta + beta(1)) and (beta + beta(1) + gamma(1)) result from beta -> alpha + beta(1) eutectoid and beta + gamma(1) -> beta(1) peritectoid reactions forming metastable beta(1) in the binary Cu-Al. With the lowering of temperature from 853 to 818 K, these three-phase fields are shifted to lower Sn concentrations, with simultaneous shrinkage and shifting of (beta + beta(1)) two-phase field. The three-phase field (alpha + beta + gamma(1)) resulting from the binary reaction beta -> alpha + gamma(1) shifts to higher Sn contents, with associated shrinkage of the beta field, with decreasing temperature. With further reduction of temperature, a new ternary invariant reaction beta + beta(1) -> alpha + gamma(1) is observed at similar to 813 K. The beta disappears completely at 803 K, giving rise to the three-phase field (alpha + beta(1) + gamma(1)). Some general guidelines on the role of ternary additions (M) on the stability of the ordered beta(1) phase are obtained by comparing the results of this study with data in the literature on other systems in the systems group Cu-Al-M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sub-solidus phase relations in the ternary systems CaO-RuO2-SiO2 and CaO-RuO2-V2O5 have been refined using thermodynamic data on calcium ruthenates, silicates and vanadates. Tie lines are established by considering Gibbs energy change for exchange reactions. Quaternary oxides have not been detected in these systems. Because of the relatively large entropy associated with phase transition of Ca2SiO4 from olivine to alpha' structure at 1120 K, reversal of one tie line is seen in the system CaO-RuO2-SiO2 between 950 and 1230 K. There is no change in sub-solidus phase relation as a function of temperature in the system CaO-RuO2-V2O5. Since vanadium can exist in several lower oxidation states, the computed sub-solidus phase relations are valid only at high oxygen partial pressures. There is fair agreement between the computed phase diagram and the limited experimental information available for CaO-deficient compositions in the literature. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. `Semi-arid' (500-800 mm of mean annual rainfall), `sub-humid' (800-1,200 mm/year) and `humid' (1,200-1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<+/- 5 %), EC versus TZ+ (similar to 0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is `hard' to `very hard' in terms of Ca-Mg hardness. Polluted wells are identified (> 40 % of pollution) and eliminated for the characterization. Piper's diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl similar to 14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration-depth profiles are in support of the geological stratification i.e., not approximate to 18 m of saprolite and similar to 25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into `deep' and `shallow' based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using `recharge-discharge' concept based on rainfall intensity instead of traditional monsoon-non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge-discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A molecular dynamics (MD) investigation of LiCl in water, methanol, and ethylene glycol (EG) at 298 K is reported. Several; structural and dynamical properties of the ions as well as the solvent such as self-diffusivity, radial distribution functions, void and neck distributions, velocity autocorrelation functions, and mean residence times of solvent in the first solvation shell have been computed. The results show that the reciprocal relationship between the self-diffusivity of the ions and the viscosity is valid in almost all solvents with the exception of water. From an analysis of radial distribution functions and coordination numbers the nature of hydrogen bonding within the solvent and its influence on the void and neck distribution becomes evident. It is seen that the solvent solvent interaction is important in EG while solute solvent interactions dominate in water and methanol. From Voronoi tessellation, it is seen that the voids and necks within methanol are larger as compared to those within water or EG. On the basis of the void and neck distributions obtained from MD simulations and literature experimental data of limiting ion conductivity for various ions of different sizes we show that there is a relation between the void and neck radius on e one hand and dependence of conductivity on the ionic radius on the other. It is shown that the presence of large diameter voids and necks in methanol is responsible for maximum in limiting ion conductivity (lambda(0)) of TMA(+), while in water in EG, the maximum is seen for Rb+. In the case of monovalent anions, maximum in lambda(0) as a function ionic radius is seen for Br- in water EG but for the larger ClO4- ion in methanol. The relation between the void and neck distribution and the variation in lambda(0) with ionic radius arises via the Levitation effect which is discussed. These studies show the importance of the solvent structure and the associated void structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study melting of a face-centered crystalline solid consisting of polydisperse Lennard-Jones spheres with Gaussian polydispersity in size. The phase diagram reproduces the existence of a nearly temperature invariant terminal polydispersity (delta(t) similar or equal to 0.11), with no signature of reentrant melting. The absence of reentrant melting can be attributed to the influence of the attractive part of the potential upon melting. We find that at terminal polydispersity the fractional density change approaches zero, which seems to arise from vanishingly small compressibility of the disordered phase. At constant temperature and volume fraction the system undergoes a sharp transition from crystalline solid to the disordered amorphous or fluid state with increasing polydispersity. This has been quantified by second- and third-order rotational invariant bond orientational order, as well as by the average inherent structure energy. The translational order parameter also indicates a similar sharp structural change at delta similar or equal to 0.09 in case of T* = 1.0, phi = 0.58. The free energy calculation further supports the sharp nature of the transition. The third-order rotationally invariant bond order shows that with increasing polydispersity, the local cluster favors a more icosahedral arrangement and the system loses its local crystalline symmetry. Interestingly, the value of structure factor S(k) of the amorphous phase at delta similar or equal to 0.10 (just beyond the solid-liquid transition density at T* = 1) becomes 2.75, which is below the value of 2.85 required for freezing given by the empirical Hansen-Verlet rule of crystallization, well known in the theory of freezing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Residue depth accurately measures burial and parameterizes local protein environment. Depth is the distance of any atom/residue to the closest bulk water. We consider the non-bulk waters to occupy cavities, whose volumes are determined using a Voronoi procedure. Our estimation of cavity sizes is statistically superior to estimates made by CASTp and VOIDOO, and on par with McVol over a data set of 40 cavities. Our calculated cavity volumes correlated best with the experimentally determined destabilization of 34 mutants from five proteins. Some of the cavities identified are capable of binding small molecule ligands. In this study, we have enhanced our depth-based predictions of binding sites by including evolutionary information. We have demonstrated that on a database (LigASite) of similar to 200 proteins, we perform on par with ConCavity and better than MetaPocket 2.0. Our predictions, while less sensitive, are more specific and precise. Finally, we use depth (and other features) to predict pK(a)s of GLU, ASP, LYS and HIS residues. Our results produce an average error of just <1 pH unit over 60 predictions. Our simple empirical method is statistically on par with two and superior to three other methods while inferior to only one. The DEPTH server (http://mspc.bii.a-star.edu.sg/depth/) is an ideal tool for rapid yet accurate structural analyses of protein structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature (T-K(o)) in weakly swollen isotropic (L-i) and lamellar (L-alpha) mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase L-c melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below T-K(o), which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the L-i phase to an L-alpha phase induced by shear flow, before the nucleation of the Lc phase. Shear diagram of the L-i phase constructed in the parameter space of shear rate ((gamma)) over dot vs. temperature exhibits L-i -> L-c and L-i -> L-alpha transitions above the equilibrium crystallization temperature (T-K(o)), in addition to the irreversible shear-driven nucleation of L-c in the L-i phase below T-K(o). In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a comprehensive study of two of the most experimentally relevant extensions of Kitaev's spinless model of a one-dimensional p-wave superconductor: those involving (i) longer-range hopping and superconductivity and (ii) inhomogeneous potentials. We commence with a pedagogical review of the spinless model and, as a means of characterizing topological phases exhibited by the systems studied here, we introduce bulk topological invariants as well as those derived from an explicit consideration of boundary modes. In time-reversal symmetric systems, we find that the longer range hopping leads to topological phases characterized by multiple Majorana modes. In particular, we investigate a spin model that respects a duality and maps to a fermionic model with multiple Majorana modes; we highlight the connection between these topological phases and the broken symmetry phases in the original spin model. In the presence of time-reversal symmetry breaking terms, we show that the topological phase diagram is characterized by an extended gapless regime. For the case of inhomogeneous potentials, we explore phase diagrams of periodic, quasiperiodic, and disordered systems. We present a detailed mapping between normal state localization properties of such systems and the topological phases of the corresponding superconducting systems. This powerful tool allows us to leverage the analyses of Hofstadter's butterfly and the vast literature on Anderson localization to the question of Majorana modes in superconducting quasiperiodic and disordered systems, respectively. We briefly touch upon the synergistic effects that can be expected in cases where long-range hopping and disorder are both present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nano-sized bimetallic dispersoids consisting of (Pb) and beta-(Sn) phases of eutectic composition (Pb26.1Sn73.9) embedded in aluminum and Al-Cu-Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, beta-(Sn) solid solution co-exist in all the embedded nanoparticles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and beta-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional triangular-lattice antiferromagnetic systems continue to be an interesting area in condensed matter physics and LiNiO2 is one such among them. Here we present a detailed experimental magnetic study of the quasi-stoichiometric LixNi2-xO2 system (0.67diagram is constructed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a system of hard-core bosons at half-filling in a one-dimensional optical superlattice. The bosons are allowed to hop to nearest-and next-nearest-neighbor sites. We obtain the ground-state phase diagram as a function of microscopic parameters using the finite-size density-matrix renormalization-group method. Depending on the sign of the next-nearest-neighbor hopping and the strength of the superlattice potential the system exhibits three different phases, namely the bond-order (BO) solid, the superlattice induced Mott insulator (SLMI), and the superfluid (SF) phase. When the signs of both hopping amplitudes are the same (the unfrustratedase), the system undergoes a transition from the SF to the SLMI at a nonzero value of the superlattice potential. On the other hand, when the two amplitudes differ in sign (the frustrated case), the SF is unstable to switching on a superlattice potential and also exists only up to a finite value of the next-nearest-neighbor hopping. This part of the phase diagram is dominated by the BO phase which breaks translation symmetry spontaneously even in the absence of the superlattice potential and can thus be characterized by a bond-order parameter. The transition from BO to SLMI appears to be first order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase equilibrium experiments indicate that NdRhO3 is the only ternary oxide in the system Nd-Rh-O at 1273 K; it has orthorhombically-distorted perovskite structure. By employing a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte, thermodynamic properties of NdRhO3 are determined. The standard Gibbs energy of formation of NdRhO3 from its component binary oxides in the temperature ranges from 900 to 1300 K can be expressed as: 1/2Rh(2)O(3) (ortho)+1/2Nd(2)O(3)(hex)=NdRhO3(ortho), Delta(f(o,x))G(0)/J mol(-1)( +/- 197) = - 66256+5.64 (T/K). The decomposition temperature of NdRhO3 computed from extrapolated thermodynamic data is 1803 (+/- 4) K in pure oxygen and 1692 (+/- 4) K in air at standard pressure. Oxygen partial pressure-composition diagram and three-dimensional chemical potential diagram at 1273 K are developed from thermodynamic data obtained in this study and auxiliary information from the literature. Equilibrium temperature-composition phase diagrams at constant oxygen partial pressures are also constructed. (C) 2013 Elsevier Ltd. All rights reserved.