203 resultados para Television broadcasting of films.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin films of Bi2VO5.5 (BVO), a vanadium analog of the n = I member of the Aurivillius family, have been prepared by pulsed laser deposition. The BVO films grow along the [001] direction on LaNiO3(LNO) and YBa2Cu3O7 (YBCO) electrode buffer layers on LaA- IO3(LAO) substrates as obtained from X-ray diffraction studies. The microstructure of the films and of the interfaces within the film and between the film and the substrate were characterized using transmission electron microscopy. The in-plane epitaxial relationship of the rhombohedral LNO on perovskite LAO was [100] LNO // [100] LAO and [001] LNO // [001] LAO. High resolution lattice images showed a sharp interface between LNO and LAO. However, the LNO film is twinned with a preferred orientation along the growth direction. The BVO layer is single crystalline on both LNO/LAO and YBCO/LAO with the caxis parallel to the growth direction except for a thin layer of about 400 Å at the interface which is polycrystalline.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The constitutive behavior of passivated copper films is studied. Stresses in copper films of thickness ranging from 1000 nm to 40 nm, passivated with silicon oxide on a quartz or silicon substrate, were measured using the curvature method. The thermal cycling spans a temperature range from - 196 to 600°C. It is seen that the strong relaxation at high temperatures normally found in unpassivated films is nonexistent for passivated films. The copper film did not show any rate-dependent effect over a range of heating/cooling rate from 5 to 25°C/min. Further analyses showed that significant strain hardening exists during the course of thermal loading. In particular, the measured stress- temperature response can only be fitted with a kinematic hardening model, if a simple constitutive law within the continuum plasticity framework is to be used. The analytic procedures for extracting the film properties are presented. Implications to stress modeling of copper interconnects in actual devices are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin films of ferroelectric ABi2Ta2O9 bismuth-layered structure, where A = Ba, Sr and Ca, were prepared by pulsed laser deposition technique on Pt/TiO2/SiO2/Si(100) substrates. The influence of substrate temperature between 500 to 750°C, and oxygen partial pressure 100-300 mTorr, on the structural and electrical properties of the films was investigated. The films deposited above 650°C substrate temperature showed complete Aurivillius layered structure. Films annealed at 750°C for 1h in oxygen atmosphere have exhibited better electrical properties. Atomic force microscopy study of surface topography shows that the films grown at lower temperature has smaller grains and higher surface roughness. This paper discusses the pronounced influence of A-site cation substitution on the structural and ferroelectric properties with the aid of Raman spectroscopy, X-ray diffraction and electrical properties. The degradation of ferroelectric properties with Ba and Ca substitution at A-sites is attributed to the higher structural distortion caused by changing tolerance factor. A systematic proportionate variation of coercive field is attributed to electronegativity difference of A-site cations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report crack formation in alumina films grown on Si(100), caused by annealing in a controlled oxidizing ambient. The films were grown in a low-pressure CVD reactor, using aluminium acetylacetonate as precursor. High purity argon and nitrous oxide were employed as carrier and oxidizing gas, respectively. The films were characterized by optical microscopy and SEM/EDAX. The proportion and chemical nature of the heteroatoms, namely C and H, incorporated into the films from the precursor, were characterized by XPS, and FTIR. As-deposited films do not exhibit any cracks, while post-deposition annealing results in cracks. Apart from the delamination of the films, annealing in nitrous oxide ambient leads to an unusual crack geometry, which we term the “railway-track”. These twin cracks are very straight and run parallel to each other for as much as several millimeters. Often, two such linear tracks meet at exactly 90°. Between some of these tracks lie bullet-like structures with very sharp tips, oriented in a specific direction. As cracks are generally activated by residual stress, both thermal and intrinsic, the origins of the stresses that generate these linear cracks are discussed. The redistribution of stress, arising from the removal of C and H during annealing, will also be discussed. An attempt has been made to correlate the formation of cracks with the crystal structure of the film.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported. X-ray diffraction patterns reveal that the films were preferentially oriented along the (1 1 1) direction. The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap showed strong thickness dependence. The average film hardness and Young's modulus obtained from load-displacement curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of (1 1 1) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from the nanoscratch test was ~0.4.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported. X-ray diffraction patterns reveal that the films were preferentially oriented along the (1 1 1) direction. The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap showed strong thickness dependence. The average film hardness and Young's modulus obtained from load-displacement curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of (1 1 1) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from the nanoscratch test was ~0.4.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 1016 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have prepared epitaxial thin films of Yy‐Pr1‐y‐Ba‐Cu‐O (y= 1 to 0) and superlattices of Y‐Ba‐Cu‐O/Yy‐Pr1‐y ‐Ba‐Cu‐O using pulsed laser deposition technique. The zero resistance transition temperatures of Yy‐Pr1‐y‐Ba‐Cu‐O bulk samples are reproduced in the films. The composition oscillations in the superlattices are observed by SIMS. The films and superlattices are found to have c‐axis orientations and good crystallinity.