252 resultados para Solvent Orange 7
Synthesis, Structure, Negative Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV(2)O(7)
Resumo:
A new series of compounds identified in the phase diagram of ZrO(2)-V(2)O(8)-MoO(3) have been synthesized via the solution combustion method. Single crystals of one of the compounds in the series, ZrV(1.50)Mo(0.50)O(7.25), were grown by the melt-cool technique from the starting materials with double the MoO(3) quantity. The room temperature average crystal structure of the grown crystals was solved using the single crystal X-ray diffraction technique. The crystals belong to the cubic crystal system, space group Pa (3) over bar (No. 205) with a = 8.8969 (4) angstrom, V = 704.24 (6) angstrom(3), and Z = 4. The final R(1) value of 0.0213 was achieved for 288 independent reflections during the structure refinement. The Zr(4+) occupies the special position (4a) whereas V(5+) and Mo(6+) occupy two unique (8c) Wyckoff positions. Two fully occupied O atoms, (24d) and (4b), one partially occupied 0 atom (8c) have been identified for this molybdovanadate, which is a unique feature for these crystals. The structure is related to both ZrV(2)O(7) and cubic ZrMo(2)O(8). The temperature dependent single crystal studies show negative thermal expansion above 370 K. The compounds have been characterized by powder X-ray diffraction, solid-state UV-vis diffuse reflectance spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photocatalytic activity of these compounds has been investigated for the degradation of various dyes, and these compounds show specificity toward the degradation of non-azoic dyes.
Resumo:
A cross-linked polymer ``gel'' electrolyte obtained from free radical polymerization of a vinyl monomer (acrylonitrile; AN) in a room temperature ionic liquid electrolyte (N,N-methyl butyl pyrrolidinium-bis (trifluoromethanesulphonyl)imide-lithium bis(trifluoromethanesulphonyl) imide;LiTFSI-[Py(1,4)-TFSI]) for application in high rate capability rechargeable lithium-ion batteries is discussed here. This is a novel alternative compared to the often employed approach of using a molecular liquid as the medium for performing the polymerization reaction. The polymer ``gel'' electrolytes (AN:Py(1,4)-TFSI = 0.16-0.18, w/w) showed remarkable compliable mechanical strength and higher thermal stability compared to LiTFSI-[Py(1,4)-TFSI]. Despite two orders increase in magnitude of viscosity of polymer ``gels'', the room temperature ionic conductivity of the ``gels'' (1.1 x 10(-3)-1.7 x 10(-3) Omega(-1) cm(-1)) were nearly identical to that of the ionic liquid (1.8 x 10(-3) Omega(-1) cm(-1)). The present ``gel'' electrolytes did not exhibit any ageing effects on ionic conductivity similar to the conventional polymer gel electrolytes (e.g. high molecular weight polymer + salt + high dielectric constant molecular solvent). The disorder (ionic liquid) to a relative order (cross-linked polymer electrolyte) transformation does not at all influence the concentration of conducting species. The polymer framework is still able to provide efficient pathways for fast ion transport. Unlike the ionic liquid which is impossible to assemble without a conventional separator in a cell, the polymer ``gel'' electrolyte could be conveniently assembled without a separator in a Li vertical bar lithium iron phosphate (LiFePO(4)) cell. Compared to the ionic liquid, the ``gel'' electrolyte showed exceptional cyclability and rate capability (current density: 35-760 mA g(-1) with LiFePO(4) electronically wired with carbon (amorphous or multiwalled nanotube [MWCNT]).
Resumo:
Thin foils of Cu, Au and Cu + Au alloys embedded in indium sesquioxide were equilibrated with controlled streams of CO-CO2 mixtures. The equilibrium concentrations of indium in the foils were determined by neutron activation analysis. The corresponding chemical potentials of indium were calculated from the standard free energies of formation of carbon monoxide, carbon dioxide, and indium oxide. It was found that the size difference between the solute and the solvent does not make significant contributions to the solute—solute interaction energy in the α-phase. The chemical potential of indium at one at.% concentration is 8.6 Kcals more negative in gold than in copper at 900°K. The variation of this chemical potential with alloy composition in Cu + Au system was in good agreement with Alcock and Richardson's quasichemical equation. The agreement is strengthened by the accurate knowledge of the co-ordination number in these substitutional solid solutions from X-ray diffraction studies.
Resumo:
Diversely substituted hydantoins have been synthesized by new strategy from cyanamide based precursor, that is, methyl N-cyano-N-alkyl/arylaminoacetate. Dialkylphosphates were employed as the mild reagent to hydrolyze and cyclize the substrate in one step to give quantitative yields of the desired products. Syntheses of multivalent hydantoins viz bis-hydantoin, bicyclohydantoin have potentially widened the scope and applicability of the present method. Solvent-free conditions and very easy work-up procedure make the reaction convenient and eco-friendly. Single crystal structures of some of the representative compounds are also reported. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We report a Raman study of single crystal pyrochlore Er(2)Ti(2)O(7) as a function of temperature from 12 to 300 K. In addition to the phonons, various photoluminescence (PL) lines of Er(3+) in the visible range are also observed. Our Raman data show an anomalous red-shift of two phonons (one at similar to 200 cm(-1) and another at similar to 520 cm(-1)) upon cooling from room temperature which is attributed to phonon-phonon anharmonic interactions. However, the phonons at similar to 310, 330, and 690 cm(-1) initially show a blue-shift upon cooling from room temperature down to about 130 K, followed by a red-shift, indicating a structural deformation at similar to 130 K. The intensities of the PL bands associated with the transitions between the various levels of the ground state manifold ((4)I(15/2)) and the (2)H(11/2) as well as (4)S(3/2) excited state manifolds of Er(3+) show a change at similar to 130 K. Moreover, the temperature dependence of the peak position of the two PL bands shows a change in their slope (d(omega)/d(T)) at similar to 130 K, thus further strengthening the proposal of a structural deformation. The temperature dependence of the peak positions of the PL bands has been analyzed using the theory of optical dephasing in crystals.
Resumo:
We discuss expectations for the total and inelastic cross sections at LHC CM energies root s = 7 TeV and 14 TeV obtained in an eikonal minijet model augmented by soft gluon k(t)-resummation, which we describe in some detail. We present a band of predictions which encompass recent LHC data and suggest that the inelastic cross section described by two-channel eikonal models include only uncorrelated processes. We show that this interpretation of the model is supported by the LHC data.
Resumo:
An isothermal section of the phase diagram for (silver + rhodium + oxygen) at T = 1173 K has been established by equilibration of samples representing twelve different compositions, and phase identification after quenching by optical and scanning electron microscopy (s.e.m.), X-ray diffraction (x.r.d.), and energy dispersive analysis of X-rays (e.d.x.), Only one ternary oxide, AgRhO2, was found to be stable and a three phase region involving Ag, AgRhO2 and Rh2O3 was identified. The thermodynamic properties of AgRhO2 were measured using a galvanic cell in the temperature range 980 K to 1320 K. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa was used as the reference electrode. The Gibbs free energy of formation of the ternary oxide from the elements, ΔfGo (AgRhO2), can be represented by two linear equations that join at the melting temperature of silver. In the temperature range 980 K to 1235 K, ΔfGo(AgRhO2)/(J . mol-1) = -249080 + 179.08 T/K (±120). Above the melting temperature of silver, in the temperature range 1235 K to 1320 K, ΔfGo(AgRhO2)/(J . mol-1) = -260400 + 188.24 T/K (±95). The thermodynamic properties of AgRhO2 at T = 298.15 K were evaluated from the high temperature data. The chemical potential diagram for (silver + rhodium + oxygen) at T = 1200 K was also computed on the basis of the results of this study.
Resumo:
The gamma-phase poly (vinylidene fluoride) (PVDF) films are usually prepared using dimethyl sulfoxide (DMSO) solvent, regardless of preparation temperature. Here we report the crystallization of both alpha and gamma-phase PVDF films by varying preparation temperature using DMSO solvent. The gamma-phase PVDF films were annealed at 70, 90, 110, 130 and 160 degrees C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described. When thin films were annealed at 90 degrees C for 5 h, maximum percentage of beta-phase appears in PVDF thin films. The gamma-phase PVDF films completely converted to alpha-phase when they were annealed at 160 degrees C for 5 h. From X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC) and Raman studies, it is confirmed that the PVDF thin films, cast from solution and annealed at 90 degrees C for 5 h, have maximum percentage of beta-phase. The beta-phase PVDF shows a remnant polarization of 4.9 mu C/cm(2) at 1400 kV/cm at 1 Hz.
Resumo:
A solvent-free synthesis of alpha-aminonitriles and beta-nitroamines by oxidative cross-dehydrogenative coupling under aerobic condition is reported. A catalytic amount of molybdenum(VI) acetylacetonoate was found to catalyze cyanation of tertiary amines to form alpha-aminonitriles, whereas vanadium pentoxide was found to promote aza-Henry reaction to furnish beta-nitroamines. Both of these environmentally benign reactions are performed in the absence of solvents using molecular oxygen as an oxidant.
Resumo:
A novel approach for the synthesis of N-1 substituted thiohydantoin has been developed to give quantitative yields of the desired products. The efficient synthesis of bis-thiohydantoin derivative and bicyclothiohydantoin has extended scope and applicability of present method. Solvent-free conditions and very easy work-up procedure make the reaction convenient and eco-friendly. All the products were characterized by spectroscopic techniques and elemental analysis, and finally the structure of representative ;compound was also confirmed by X-ray crystallography. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Investigations into the variation of self-diffusivity with solute radius, density, and degree of disorder of the host medium is explored. The system consists of a binary mixture of a relatively smaller sized solute, whose size is varied and a larger sized solvent interacting via Lennard-Jones potential. Calculations have been performed at three different reduced densities of 0.7, 0.8, and 0.933. These simulations show that diffusivity exhibits a maximum for some intermediate size of the solute when the solute diameter is varied. The maximum is found at the same size of the solute at all densities which is at variance with the prediction of the levitation effect. In order to understand this anomaly, additional simulations were carried out in which the degree of disorder has been varied while keeping the density constant. The results show that the diffusivity maximum gradually disappears with increase in disorder. Disorder has been characterized by means of the minimal spanning tree. Simulations have also been carried out in which the degree of disorder is constant and only the density is altered. The results from these simulations show that the maximum in diffusivity now shifts to larger distances with decrease in density. This is in agreement with the changes in void and neck distribution with density of the host medium. These results are in excellent agreement with the predictions of the levitation effect. They suggest that the effect of disorder is to shift the maximum in diffusivity towards smaller solute radius while that of the decrease in density is to shift it towards larger solute radius. Thus, in real systems where the degree of disorder is lower at higher density and vice versa, the effect due to density and disorder have opposing influences. These are confirmed by the changes seen in the velocity autocorrelation function, self part of the intermediate scattering function and activation energy. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3701619]