209 resultados para STOCHASTIC SEARCH
Resumo:
Many studies of reaching and pointing have shown significant spatial and temporal correlations between eye and hand movements. Nevertheless, it remains unclear whether these correlations are incidental, arising from common inputs (independent model); whether these correlations represent an interaction between otherwise independent eye and hand systems (interactive model); or whether these correlations arise from a single dedicated eye-hand system (common command model). Subjects were instructed to redirect gaze and pointing movements in a double-step task in an attempt to decouple eye-hand movements and causally distinguish between the three architectures. We used a drift-diffusion framework in the context of a race model, which has been previously used to explain redirect behavior for eye and hand movements separately, to predict the pattern of eye-hand decoupling. We found that the common command architecture could best explain the observed frequency of different eye and hand response patterns to the target step. A common stochastic accumulator for eye-hand coordination also predicts comparable variances, despite significant difference in the means of the eye and hand reaction time (RT) distributions, which we tested. Consistent with this prediction, we observed that the variances of the eye and hand RTs were similar, despite much larger hand RTs (similar to 90 ms). Moreover, changes in mean eye RTs, which also increased eye RT variance, produced a similar increase in mean and variance of the associated hand RT. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning.
Resumo:
In this paper we first derive a necessary and sufficient condition for a stationary strategy to be the Nash equilibrium of discounted constrained stochastic game under certain assumptions. In this process we also develop a nonlinear (non-convex) optimization problem for a discounted constrained stochastic game. We use the linear best response functions of every player and complementary slackness theorem for linear programs to derive both the optimization problem and the equivalent condition. We then extend this result to average reward constrained stochastic games. Finally, we present a heuristic algorithm motivated by our necessary and sufficient conditions for a discounted cost constrained stochastic game. We numerically observe the convergence of this algorithm to Nash equilibrium. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We introduce a new method for studying universality of random matrices. Let T-n be the Jacobi matrix associated to the Dyson beta ensemble with uniformly convex polynomial potential. We show that after scaling, Tn converges to the stochastic Airy operator. In particular, the top edge of the Dyson beta ensemble and the corresponding eigenvectors are universal. As a byproduct, these ideas lead to conjectured operator limits for the entire family of soft edge distributions. (C) 2015 Wiley Periodicals, Inc.
Resumo:
In this paper, we study two multi-dimensional Goodness-of-Fit tests for spectrum sensing in cognitive radios. The multi-dimensional scenario refers to multiple CR nodes, each with multiple antennas, that record multiple observations from multiple primary users for spectrum sensing. These tests, viz., the Interpoint Distance (ID) based test and the h, f distance based tests are constructed based on the properties of stochastic distances. The ID test is studied in detail for a single CR node case, and a possible extension to handle multiple nodes is discussed. On the other hand, the h, f test is applicable in a multi-node setup. A robustness feature of the KL distance based test is discussed, which has connections with Middleton's class A model. Through Monte-Carlo simulations, the proposed tests are shown to outperform the existing techniques such as the eigenvalue ratio based test, John's test, and the sphericity test, in several scenarios.
Resumo:
Executing authenticated computation on outsourced data is currently an area of major interest in cryptology. Large databases are being outsourced to untrusted servers without appreciable verification mechanisms. As adversarial server could produce erroneous output, clients should not trust the server's response blindly. Primitive set operations like union, set difference, intersection etc. can be invoked on outsourced data in different concrete settings and should be verifiable by the client. One such interesting adaptation is to authenticate email search result where the untrusted mail server has to provide a proof along with the search result. Recently Ohrimenko et al. proposed a scheme for authenticating email search. We suggest significant improvements over their proposal in terms of client computation and communication resources by properly recasting it in two-party settings. In contrast to Ohrimenko et al. we are able to make the number of bilinear pairing evaluation, the costliest operation in verification procedure, independent of the result set cardinality for union operation. We also provide an analytical comparison of our scheme with their proposal which is further corroborated through experiments.
Resumo:
This paper presents speaker normalization approaches for audio search task. Conventional state-of-the-art feature set, viz., Mel Frequency Cepstral Coefficients (MFCC) is known to contain speaker-specific and linguistic information implicitly. This might create problem for speaker-independent audio search task. In this paper, universal warping-based approach is used for vocal tract length normalization in audio search. In particular, features such as scale transform and warped linear prediction are used to compensate speaker variability in audio matching. The advantage of these features over conventional feature set is that they apply universal frequency warping for both the templates to be matched during audio search. The performance of Scale Transform Cepstral Coefficients (STCC) and Warped Linear Prediction Cepstral Coefficients (WLPCC) are about 3% higher than the state-of-the-art MFCC feature sets on TIMIT database.
Resumo:
In this article, we look at the political business cycle problem through the lens of uncertainty. The feedback control used by us is the famous NKPC with stochasticity and wage rigidities. We extend the New Keynesian Phillips Curve model to the continuous time stochastic set up with an Ornstein-Uhlenbeck process. We minimize relevant expected quadratic cost by solving the corresponding Hamilton-Jacobi-Bellman equation. The basic intuition of the classical model is qualitatively carried forward in our set up but uncertainty also plays an important role in determining the optimal trajectory of the voter support function. The internal variability of the system acts as a base shifter for the support function in the risk neutral case. The role of uncertainty is even more prominent in the risk averse case where all the shape parameters are directly dependent on variability. Thus, in this case variability controls both the rates of change as well as the base shift parameters. To gain more insight we have also studied the model when the coefficients are time invariant and studied numerical solutions. The close relationship between the unemployment rate and the support function for the incumbent party is highlighted. The role of uncertainty in creating sampling fluctuation in this set up, possibly towards apparently anomalous results, is also explored.
Resumo:
In this paper, we search for the regions of the phenomenological minimal supersymmetric standard model (pMSSM) parameter space where one can expect to have moderate Higgs mixing angle (alpha) with relatively light (up to 600 GeV) additional Higgses after satisfying the current LHC data. We perform a global fit analysis using most updated data (till December 2014) from the LHC and Tevatron experiments. The constraints coming from the precision measurements of the rare b-decays B-s -> mu(+)mu(-) and b -> s gamma are also considered. We find that low M-A(less than or similar to 350) and high tan beta(greater than or similar to 25) regions are disfavored by the combined effect of the global analysis and flavor data. However, regions with Higgs mixing angle alpha similar to 0.1-0.8 are still allowed by the current data. We then study the existing direct search bounds on the heavy scalar/pseudoscalar (H/A) and charged Higgs boson (H-+/-) masses and branchings at the LHC. It has been found that regions with low to moderate values of tan beta with light additional Higgses (mass <= 600 GeV) are unconstrained by the data, while the regions with tan beta > 20 are excluded considering the direct search bounds by the LHC-8 data. The possibility to probe the region with tan beta <= 20 at the high luminosity run of LHC are also discussed, giving special attention to the H -> hh, H/A -> t (t) over bar and H/A -> tau(+)tau(-) decay modes.
Resumo:
Forty-six lectin domains which have homologues among well established eukaryotic and bacterial lectins of known three-dimensional structure, have been identified through a search of 165 archeal genomes using a multipronged approach involving domain recognition, sequence search and analysis of binding sites. Twenty-one of them have the 7-bladed -propeller lectin fold while 16 have the -trefoil fold and 7 the legume lectin fold. The remainder assumes the C-type lectin, the -prism I and the tachylectin folds. Acceptable models of almost all of them could be generated using the appropriate lectins of known three-dimensional structure as templates, with binding sites at one or more expected locations. The work represents the first comprehensive bioinformatic study of archeal lectins. The presence of lectins with the same fold in all domains of life indicates their ancient origin well before the divergence of the three branches. Further work is necessary to identify archeal lectins which have no homologues among eukaryotic and bacterial species. Proteins 2016; 84:21-30. (c) 2015 Wiley Periodicals, Inc.
Resumo:
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie dagger-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Ito formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus. (C) 2016 AIP Publishing LLC.
Resumo:
In this paper, we present two new stochastic approximation algorithms for the problem of quantile estimation. The algorithms uses the characterization of the quantile provided in terms of an optimization problem in 1]. The algorithms take the shape of a stochastic gradient descent which minimizes the optimization problem. Asymptotic convergence of the algorithms to the true quantile is proven using the ODE method. The theoretical results are also supplemented through empirical evidence. The algorithms are shown to provide significant improvement in terms of memory requirement and accuracy.
Resumo:
We study an s-channel resonance R as a viable candidate to fit the diboson excess reported by ATLAS. We compute the contribution of the similar to 2 TeV resonance R to semileptonic and leptonic final states at the 13 TeV LHC. To explain the absence of an excess in the semileptonic channel, we explore the possibility where the particle R decays to additional light scalars X, X or X, Y. A modified analysis strategy has been proposed to study the three-particle final state of the resonance decay and to identify decay channels of X. Associated production of R with gauge bosons has been studied in detail to identify the production mechanism of R. We construct comprehensive categories for vector and scalar beyond-standard-model particles which may play the role of particles R, X, Y and find alternate channels to fix the new couplings and search for these particles.
Resumo:
We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.