239 resultados para SPIN-CROSSOVER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate ((M) over dot) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given (M) over dot. However, slowly spinning BHs can turn out to be more massive than spinning BHs if (M) over dot at their formation stage was higher compared to faster spinning BHs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffeomorphisms preserve spacetime singularities, whereas higher spin symmetries need not. Since three-dimensional de Sitter space has quotients that have big-bang/big-crunch singularities and since dS(3)-gravity can be written as an SL(2, C) Chern-Simons theory, we investigate SL(3, C) Chern-Simons theory as a higher-spin context in which these singularities might get resolved. As in the case of higher spin black holes in AdS(3), the solutions are invariantly characterized by their holonomies. We show that the dS(3) quotient singularity can be desingularized by an SL(3, C) gauge transformation that preserves the holonomy: this is a higher spin resolution the cosmological singularity. Our work deals exclusively with the bulk theory, and is independent of the subtleties involved in defining a CFT2 dual to dS(3) in the sense of dS/CFT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3 vertical bar 2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3 vertical bar 2). Using the relation between the bulk field equations and the Ward identities of a CFT with N = 2 super-W-3 symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the N = 2 super-W-3 algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engineered in specifically designed and fabricated core-shell nanoparticle systems, realized here in terms of soft magnetic Fe3O4 as the core and hard magnetic insulator CoFe2O4 as the shell materials. We show that this provides a magnetically switchable tunnel barrier that controls the magnetoresistance of the system, instead of the magnetic properties of the magnetic grain material, Fe3O4, and thus establishing the feasibility of engineered SVMR structures. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend our analysis of transverse single spin asymmetry in electroproduction of J/ψ to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q2 dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct cosmological solutions of higher spin gravity in 2 + 1 dimensional de Sitter space. We show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary conformal field theory partition function, and it reduces to Gibbons-Hawking thermodynamics in the spin-2 case. By using the prescription of Maldacena, we relate the thermodynamics of these solutions to those of higher spin black holes in AdS(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin dependent Falicov-Kimball model (FKM) is studied on a triangular lattice using numerical diagonalization technique and Monte-Carlo simulation algorithm. Magnetic properties have been explored for different values of parameters: on-site Coulomb correlation U, exchange interaction J and filling of electrons. We have found that the ground state configurations exhibit long range Neel order, ferromagnetism or a mixture of both as J is varied. The magnetic moments of itinerant (d) and localized U) electrons are also studied. For the one-fourth filling case we found no magnetic moment from d- and f-electrons for U less than a critical value. `.2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider free fermion and free boson CFTs in two dimensions, deformed by a chemical potential mu for the spin-three current. For the CFT on the infinite spatial line, we calculate the finite temperature entanglement entropy of a single interval perturbatively to second order in mu in each of the theories. We find that the result in each case is given by the same non-trivial function of temperature and interval length. Remarkably, we further obtain the same formula using a recent Wilson line proposal for the holographic entanglement entropy, in holomorphically factorized form, associated to the spin-three black hole in SL(3, R) x SL(3, R) Chern-Simons theory. Our result suggests that the order mu(2) correction to the entanglement entropy may be universal for W-algebra CFTs with spin-three chemical potential, and constitutes a check of the holographic entanglement entropy proposal for higher spin theories of gravity in AdS(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study Heisenberg spin-1/2 and spin-1 chains with alternating ferromagnetic (J(1)(F)) and antiferromagnetic (J(1)(A)) nearest-neighbor interactions and a ferromagnetic next-nearest-neighbor interaction (J(2)(F)). In this model frustration is present due to the non-zero J(2)(F). The model with site spin s behaves like a Haldane spin chain, with site spin 2s in the limit of vanishing J(2)(F) and large J(1)(F)/J(1)(A). We show that the exact ground state of the model can be found along a line in the parameter space. For fixed J(1)(F), the phase diagram in the space of J(1)(A)-J(2)(F) is determined using numerical techniques complemented by analytical calculations. A number of quantities, including the structure factor, energy gap, entanglement entropy and zero temperature magnetization, are studied to understand the complete phase diagram. An interesting and potentially important feature of this model is that it can exhibit a macroscopic magnetization jump in the presence of a magnetic field; we study this using an effective Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time tau similar to 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of t. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a tau of similar to 0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise experimental implementation of unitary operators is one of the most important tasks for quantum information processing. Numerical optimization techniques are widely used to find optimized control fields to realize a desired unitary operator. However, finding high-fidelity control pulses to realize an arbitrary unitary operator in larger spin systems is still a difficult task. In this work, we demonstrate that a combination of the GRAPE algorithm, which is a numerical pulse optimization technique, and a unitary operator decomposition algorithm Ajoy et al., Phys. Rev. A 85, 030303 (2012)] can realize unitary operators with high experimental fidelity. This is illustrated by simulating the mirror-inversion propagator of an XY spin chain in a five-spin dipolar coupled nuclear spin system. Further, this simulation has been used to demonstrate the transfer of entangled states from one end of the spin chain to the other end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study models of interacting fermions in one dimension to investigate the crossover from integrability to nonintegrability, i.e., quantum chaos, as a function of system size. Using exact diagonalization of finite-sized systems, we study this crossover by obtaining the energy level statistics and Drude weight associated with transport. Our results reinforce the idea that for system size L -> infinity nonintegrability sets in for an arbitrarily small integrability-breaking perturbation. The crossover value of the perturbation scales as a power law similar to L-eta when the integrable system is gapless. The exponent eta approximate to 3 appears to be robust to microscopic details and the precise form of the perturbation. We conjecture that the exponent in the power law is characteristic of the random matrix ensemble describing the nonintegrable system. For systems with a gap, the crossover scaling appears to be faster than a power law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Employing nitronyl nitroxide lanthanide(III) complexes as metallo-ligands allowed the efficient and highly selective preparation of three series of unprecedented heterotri-spin (Cu Ln-radical) one-dimensional compounds. These 2p-3d-4f spin systems, namely Ln(3)Cu(hfac)II(NitPhOAII)41 (Ln(III)=Gd 1(Gd), Tb 1(Tb), Dy 1(Dy); NitPhOAII=2-(4'-allyloxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide), Ln(3)Cu(hfac)II(NitPhOPO4] (1-nrn=Gd 2Gd, Tb 2Tb, Dy 2(Dy), Ho 2HOf Yb 2yb; NitPhOPr= 2-(4'-propoxyphenyI)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and Ln3Cu(hfac)II(NitPhOB441 (LnIm=Gd 3Gd, Tb 3Tb, Dy 3(Dy); NitPhOBz=2-(4'-benzyloxy- phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) involve O-bound nitronyl nitroxide radicals as bridging ligands in chain structures with a Cu-Nit-Ln-Nit-Ln-Nit-Ln-Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal radical interactions take place in these heterotri-spin chain complexes, these and the next-neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single-chain magnet behavior.