244 resultados para Quantum wires


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a quantum method for generation of random numbers based on bosonic stimulation. Randomness arises through the path-dependent indeterministic amplification of two competing bosonic modes. We show that the process provides an efficient method for macroscopic extraction of microscopic randomness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystalline zinc oxide (ZnO) nanorod array has been used for the fabrication of CdSe/CdS/PbS/ZnO quantum dot sensitized solar cell (QDSSC). The ZnO nanorod array photoanodes are sensitized with consecutive layer of PbS, CdS and CdSe quantum dots by employing simple successive ion layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The performances of the QDSSCs are examined in detail using polysulfide electrolyte with copper sulfide (CuS) counter electrode. The combination of two successive layers of PbS with CdSe/CdS/ZnO shows an improved short circuit current density (12.223 mA cm(-2)) with a maximum power to conversion efficiency of 2.352% under 1 sun illumination. This enhancement is mainly attributed due to the better light harvesting ability of the PbS quantum dots and make large accumulation of photo-injected electrons in the conduction band of ZnO, and CdSe/CdS layers lower the recombination of photo-injected electrons with the electrolyte, these are well evidenced with the photovoltaic studies and electrochemical impedance spectroscopy. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnS quantum dots (QDs) of different sizes are synthesized by a simple chemical co-precipitation method at room temperature, by varying pH value of the reaction mixture. Samples are characterized by an X-ray diffractometer, transmission electron microscope, energy-dispersive X-ray analysis, etc. Linear optical properties, including UV-visible absorption and photoluminescence emission characteristics, of as-prepared QDs are measured. Size dependent nonlinear optical property, such as second harmonic generation (SHG) of 1064 nm Nd:YAG laser fundamental radiation in the synthesized ZnS QDs, is reported for the first time, to the best of our knowledge, by using the standard Kurtz-Perry powder method. In not to study the possibility of the synthesized ZnS QDs in different device applications ZnS/PMMA (polymethylmethacrylate) nanocomposites are also synthesized. The presence of weak chemical interaction between the polymer matrix and ZnS QDs is confirmed by Fourier transform infrared spectroscopy. Thermal properties of the nanocomposites are studied by differential scanning calorimetry and thermo-gravimetric analysis techniques, which show that the composites are stable up to similar to 300 degrees C temperature. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymatic regulation is a fast and reliable diagnosis tool via identification and design of inhibitors for modulation of enzyme function. Previous reports on quantum dots (QDs)-enzyme interactions reveal a protein-surface recognition ability leading to promising applications in protein stabilization, protein delivery, bio-sensing and detection. However, the direct use of QDs to control enzyme inhibition has never been revealed to date. Here we show that a series of biocompatible surface-functionalized metal-chalcogenide QDs can be used as potent inhibitors for malignant cells through the modulation of enzyme activity, while normal cells remain unaffected. The in vitro activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme involved critically in the glycolysis of cancer cells, is inactivated selectively in a controlled way by the QDs at a significantly low concentration (nM). Cumulative kinetic studies delineate that the QDs undergo both reversible and irreversible inhibition mechanisms owing to the site-specific interactions, enabling control over the inhibition kinetics. These complementary loss-of-function probes may offer a novel route for rapid clinical diagnosis of malignant cells and biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a multipartite protocol in a counterfactual paradigm. In counterfactual quantum cryptography, secure information is transmitted between two spatially separated parties even when there is no physical travel of particles transferring the information between them. We propose here a tripartite counterfactual quantum protocol for the task of certificate authorization. Here a trusted third party, Alice, authenticates an entity Bob (e.g., a bank) that a client Charlie wishes to securely transact with. The protocol is counterfactual with respect to either Bob or Charlie. We prove its security against a general incoherent attack, where Eve attacks single particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a photoanode for dye-sensitized solar cell (DSC) based on ZnO nanoshell deposited by atomic layer deposition at 150 degrees C on a mesoporous insulating template. An ultrathin layer of ZnO between. 3 and 6 nm, which exhibits quantum confinement effect, is found to be sufficient to transport the photogenerated electrons to the external contacts and exhibits near-unity collection efficiency. A 6 nm ZnO nanoshell on a 2.5 mu m mesoporous nanoparticle Al2O3 template yields photovoltaic power conversion efficiency (PCE) of 4.2% in liquid DSC. Perovskite absorber (CH3NH3PbI3) based solid state solar cells made with similar ZnO nanostructures lead to a high PCE of 7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considers how the properties of hydrogen bonded complexes, X-H center dot center dot center dot Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H center dot center dot center dot O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4-3.0 angstrom, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental quantum simulation of a Hamiltonian H requires unitary operator decomposition (UOD) of its evolution unitary U = exp(-iHt) in terms of native unitary operators of the experimental system. Here, using a genetic algorithm, we numerically evaluate the most generic UOD (valid over a continuous range of Hamiltonian parameters) of the unitary operator U, termed fidelity-profile optimization. The optimization is obtained by systematically evaluating the functional dependence of experimental unitary operators (such as single-qubit rotations and time-evolution unitaries of the system interactions) to the Hamiltonian (H) parameters. Using this technique, we have solved the experimental unitary decomposition of a controlled-phase gate (for any phase value), the evolution unitary of the Heisenberg XY interaction, and simulation of the Dzyaloshinskii-Moriya (DM) interaction in the presence of the Heisenberg XY interaction. Using these decompositions, we studied the entanglement dynamics of a Bell state in the DM interaction and experimentally verified the entanglement preservation procedure of Hou et al. Ann. Phys. (N.Y.) 327, 292 (2012)] in a nuclear magnetic resonance quantum information processor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the nonequilibrium dynamics of quenching through a quantum critical point in topological systems, focusing on one of their defining features: ground-state degeneracies and associated topological sectors. We present the notion of ``topological blocking,'' experienced by the dynamics due to a mismatch in degeneracies between two phases, and we argue that the dynamic evolution of the quench depends strongly on the topological sector being probed. We demonstrate this interplay between quench and topology in models stemming from two extensively studied systems, the transverse Ising chain and the Kitaev honeycomb model. Through nonlocal maps of each of these systems, we effectively study spinless fermionic p-wave paired topological superconductors. Confining the systems to ring and toroidal geometries, respectively, enables us to cleanly address degeneracies, subtle issues of fermion occupation and parity, and mismatches between topological sectors. We show that various features of the quench, which are related to Kibble-Zurek physics, are sensitive to the topological sector being probed, in particular, the overlap between the time-evolved initial ground state and an appropriate low-energy state of the final Hamiltonian. While most of our study is confined to translationally invariant systems, where momentum is a convenient quantum number, we briefly consider the effect of disorder and illustrate how this can influence the quench in a qualitatively different way depending on the topological sector considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new NMR experiment that exploits the advantages of proton double quantum (DQ) NMR through a proton DQ-carbon single quantum (SQ) correlation experiment in the solid state is proposed. Analogous to the previously proposed 2D H-1 (DQ)-C-13 refocused INEPT experiment (Webber et al., 2010), the correlation between H-1 and C-13 is achieved through scalar coupling evolution, while the double quantum coherence among protons is generated through dipolar couplings. However, the new experiment relies on C-13 transverse coherence for scalar transfer. The new experiment dubbed MAS-J-H-1 (DQ)-C-13-HMQC, is particularly suited for unlabeled molecules and can provide higher sensitivity than its INEPT counterpart. The experiment is applied to four different samples. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study models of interacting fermions in one dimension to investigate the crossover from integrability to nonintegrability, i.e., quantum chaos, as a function of system size. Using exact diagonalization of finite-sized systems, we study this crossover by obtaining the energy level statistics and Drude weight associated with transport. Our results reinforce the idea that for system size L -> infinity nonintegrability sets in for an arbitrarily small integrability-breaking perturbation. The crossover value of the perturbation scales as a power law similar to L-eta when the integrable system is gapless. The exponent eta approximate to 3 appears to be robust to microscopic details and the precise form of the perturbation. We conjecture that the exponent in the power law is characteristic of the random matrix ensemble describing the nonintegrable system. For systems with a gap, the crossover scaling appears to be faster than a power law.