305 resultados para Partial Order
Resumo:
Several unsymmetrically substituted aromatic donor acceptor disulfides have been synthesized and analysed for their second order nonlinear optical properties. These molecules exhibit moderately high first hyperpolarizability (beta) with excellent transparency in the visible region. Most of the unsymmetrical disulfides have a cut-off wavelength below 420 nm. Calculations show that the molecules have an asymmetric charge distribution around the disulfide bond which is responsible for their high beta values. These results provide motivation for the design and synthesis of nonlinear optical chromophores with multiple disulfide bonds for large second order nonlinearity and excellent visible transparency.
Resumo:
In the framework of a project aimed at developing a reliable hydrogen generator for mobile polymer electrolyte fuel cells (PEFCs), particular emphasis has been addressed to the analysis of catalysts able to assure high activity and stability in transient operations (frequent start-up and shut-down cycles). In this paper, the catalytic performance of 1 at.% Pt/ceria samples prepared by coprecipitation, impregnation and combustion, has been evaluated in the partial oxidation of methane. Methane conversion and hydrogen selectivity of 96 and 99%, respectively, associated with high stability during 100h of reaction under operative conditions (start-up and shut-down cycles), have been obtained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We consider here the higher order effect of moderate longitudinal surface curvature on steady, two-dimensional, incompressible laminar boundary layers. The basic partial differential equations for the problem, derived by the method of matched asymptotic expansions, are found to possess similarity solutions for a family of surface curvatures and pressure gradients. The similarity equations obtained by this anaylsis have been solved numerically on a computer, and show a definite decrease in skin friction when the surface has convex curvature in all cases including zero pressure gradient. Typical velocity profiles and some relevant boundary-layer characteristics are tabulated, and a critical comparison with previous work is given.
Resumo:
The Turkevich method for synthesizing gold nanoparticles, using sodium citrate as the reducing agent, is renowned for its ability to produce biocompatible colloids with mean size >10 nm. Here we show that monodisperse gold nanoparticles in the 5-10 nm size range can be synthesized by simply reversing the order of addition of reactants, i.e. adding chloroauric acid to citrate solution. Kinetic studies and electron microscopic characterization revealed that the reactivity of chloroauric acid, initial molar ratio of citrate to chloroauric acid (MR), and reaction mixture pH play an important role in producing monodisperse gold nanoparticles. Reversing the order of addition also enhanced the stabilization of nanoparticles at high MR values. Remarkably, the system exhibits a `memory' of the order of addition, even when the timescale of mixing is much shorter than the timescale of synthesis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Hexagonal Dy(0.5)Y(0.5)MnO(3), a multiferroic rare-earth manganite with geometrically frustrated antiferromagnetism, has been investigated with single-crystal neutron diffraction measurements. Below 3.4 K magnetic order is observed on both the Mn (antiferromagnetic) and Dy (ferrimagnetic) sublattices that is identical to that of undiluted hexagonal DyMnO(3) at low temperature. The Mn moments undergo a spin reorientation transition between 3.4 K and 10 K, with antiferromagnetic order of the Mn sublattice persisting up to 70 K; the antiferromagnetic order in this phase is distinct from that observed in undiluted (h) DyMnO(3), yielding a qualitatively new phase diagram not seen in other hexagonal rare-earth manganites. A magnetic field applied parallel to the crystallographic c axis will drive a transition from the antiferromagnetic phase into the low-temperature ferrimagnetic phase with little hysteresis.
Resumo:
We consider the problem of maintaining information about the rank of a matrix $M$ under changes to its entries. For an $n \times n$ matrix $M$, we show an amortized upper bound of $O(n^{\omega-1})$ arithmetic operations per change for this problem, where $\omega < 2.376$ is the exponent for matrix multiplication, under the assumption that there is a {\em lookahead} of up to $\Theta(n)$ locations. That is, we know up to the next $\Theta(n)$ locations $(i_1,j_1),(i_2,j_2),\ldots,$ whose entries are going to change, in advance; however we do not know the new entries in these locations in advance. We get the new entries in these locations in a dynamic manner.
Resumo:
We study the fate of spin-1/2 spiral-ordered two-dimensional quantum antiferromagnets that are disordered by quantum fluctuations. A crucial role is played by the topological point defects of the spiral phase, which are known to have a Z(2) character. Previous works established that a nontrivial quantum spin-liquid phase results when the spiral is disordered without proliferating the Z(2) vortices. Here, we show that when the spiral is disordered by proliferating and condensing these vortices, valence-bond solid ordering occurs due to quantum Berry phase effects. We develop a general theory for this latter phase transition and apply it to a lattice model. This transition potentially provides a new example of a Landau-forbidden deconfined quantum critical point.
Resumo:
Compiler optimizations need precise and scalable analyses to discover program properties. We propose a partially flow-sensitive framework that tries to draw on the scalability of flow-insensitive algorithms while providing more precision at some specific program points. Provided with a set of critical nodes — basic blocks at which more precise information is desired — our partially flow-sensitive algorithm computes a reduced control-flow graph by collapsing some sets of non-critical nodes. The algorithm is more scalable than a fully flow-sensitive one as, assuming that the number of critical nodes is small, the reduced flow-graph is much smaller than the original flow-graph. At the same time, a much more precise information is obtained at certain program points than would had been obtained from a flow-insensitive algorithm.
Resumo:
Molecules exhibiting a thermotropic liquid-crystalline property have acquired significant importance due to their sensitivity to external stimuli such as temperature, mechanical forces, and electric and magnetic fields. As a result, several novel mesogens have been synthesized by the introduction of various functional groups in the vicinity of the aromatic core as well as in the side chains and their properties have been studied. In the present study, we report three-ring mesogens with hydroxyl groups at one terminal. These mesogens were synthesized by a multistep route, and structural characterization was accomplished by spectral techniques. The mesophase properties were studied by hot-stage optical polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. An enantiotropic nematic phase was noticed for lower homologues, while an additional smectic C phase was found for higher homologues. Solid-state high-resolution natural abundance (13)C NMR studies of a typical mesogen in the solid phase and in the mesophases have been carried out. The (13)C NMR spectrum of the mesogen in the smectic C and nematic phases indicated spontaneous alignment of the molecule in the magnetic field. By utilizing the two-dimensional separated local field (SLF) NMR experiment known as SAMPI4, (13)C-(1)H dipolar couplings have been obtained, which were utilized to determine the orientational order parameters of the mesogen.
Resumo:
The cyclic difference sets constructed by Singer are also examples of perfect distinct difference sets (DDS). The Bose construction of distinct difference sets, leads to a relative difference set. In this paper we introduce the concept of partial relative DDS and prove that an optical orthogonal code (OOC) construction due to Moreno et. al., is a partial relative DDS. We generalize the concept of ideal matrices previously introduced by Kumar and relate it to the concepts of this paper. Another variation of ideal matrices is introduced in this paper: Welch ideal matrices of dimension n by (n - 1). We prove that Welch ideal matrices exist only for n prime. Finally, we recast an old conjecture of Golomb on the Welch construction of Costas arrays using the concepts of this paper. This connection suggests that our construction of partial relative difference sets is in a sense, unique
Resumo:
We derive and study a C(0) interior penalty method for a sixth-order elliptic equation on polygonal domains. The method uses the cubic Lagrange finite-element space, which is simple to implement and is readily available in commercial software. After introducing some notation and preliminary results, we provide a detailed derivation of the method. We then prove the well-posedness of the method as well as derive quasi-optimal error estimates in the energy norm. The proof is based on replacing Galerkin orthogonality with a posteriori analysis techniques. Using this approach, we are able to obtain a Cea-like lemma with minimal regularity assumptions on the solution. Numerical experiments are presented that support the theoretical findings.
Resumo:
Nanowires of Pr0.57Ca0.41Ba0.02MnO3 (PCBM) (diameter similar to 80-90 nm and length similar to 3.5 mu m) were synthesized by a low reaction temperature hydrothermal method. Single-phase nature of the sample was confirmed by XRD experiments. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology and microstructures of the nanowires. While the bulk PCBM is known to exhibit charge order (CO) below 230 K along with a ferromagnetic transition at 110 K, SQUID measurements on the nanowires of PCBM show that the charge order is completely absent and a ferromagnetic transition occurs at 115 K. However, the magnetization in the nanowires is observed to be less compared to that in the bulk. This observation of the complete 'melting' of the charge order in the PCBM nanowires is particularly significant in view of the observation of only a weakening of the CO in the nanowires of Pr0.5Ca0.5MnO3. Electron paramagnetic resonance experiments were also carried out on the PCBM nanowires using an X-band EPR spectrometer. Characteristic differences were observed in the line width of nanowires when compared with that of the bulk.