296 resultados para Organic phosphonium salts
Resumo:
Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.
Resumo:
The synthesis, hydrogelation, and aggregation-induced emission switching of the phenylenedivinylene bis-N-octyl pyridinium salt is described. Hydrogelation occurs as a consequence of pi-stacking, van der Waals, and electrostatic interactions that lead to a high gel melting temperature and significant mechanical properties at a very low weight percentage of the gelator. A morphology transition from fiber-to-coil-to-tube was observed depending on the concentration of the gelator. Variation in the added salt type, salt concentrations, or temperature profoundly influenced the order of aggregation of the gelator molecules in aqueous solution. Formation of a novel chromophore assembly in this way leads to an aggregation-induced switch of the emission colors. The emission color switches from sky blue to white to orange depending upon the extent of aggregation through mere addition of external inorganic salts. Remarkably, the salt effect on the assembly of such cationic phenylenedivinylenes in water follow the behavior predicted from the well-known Hofmeister effects. Mechanistic insights for these aggregation processes were obtained through the counterion exchange studies. The aggregation-induced emission switching that leads to a room-temperature white-light emission from a single chromophore in a single solvent (water) is highly promising for optoelectronic applications.
Resumo:
A porous metalorganic framework, Mn(H3O)(Mn4Cl)(3)(hmtt)(8)] (POST-65), was prepared by the reaction of 5,5',10,10',15,15'-hexamethyltruxene-2,7,12-tricarboxylic acid (H(3)hmtt) with MnCl2 under solvothermal conditions. POST-65(Mn) was subjected to post-synthetic modification with Fe, Co, Ni, and Cu according to an ion-exchange method that resulted in the formation of three isomorphous frameworks, POST-65(Co/Ni/Cu), as well as a new framework, POST-65(Fe). The ion-exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasmaatomic emission spectrometry (ICP-AES), powder X-ray diffraction (PXRD), and BrunauerEmmettTeller (BET) surface-area analysis. Single-crystal X-ray diffractions studies revealed a single-crystal-to-single-crystal (SCSC)-transformation nature of the ion-exchange process. Hydrogen-sorption and magnetization measurements showed metal-specific properties of POST-65.
Resumo:
Organic plastic crystalline soft matter ion conductors are interesting alternatives to liquid electrolytes in electrochemical storage devices such as Lithium-ion batteries. The solvent dynamics plays a major role in determining the ion transport in plastic crystalline ion conductors. We present here an analysis of the frequency-dependent ionic conductivity of succinonitrile-based plastic crystalline ion conductors at varying salt composition (0.005 to 1 M) and temperature (-20 to 60 degrees C) using time-temperature superposition principle (TTSP). The main motivation of the work has been to establish comprehensive insight into the ion transport mechanism from a single method viz, impedance spectroscopy rather than employing cluster of different characterization methods probing various length and time scales. The TTSP remarkably aids in explicit identification of the extent of the roles of solvent dynamics and ion-ion interactions on the effective conductivity of the orientationally disordered plastic crystalline ion conductors.
Resumo:
Sequential transformation in a family of metal-organic framework compounds has been investigated employing both a solid-state as well as a solution mediated route. The compounds, cobalt oxy-bis(benzoate) and manganese oxybis(benzoate) having a two-dimensional structure, were reacted with bipyridine forming cobalt oxy-bis(benzoate)-4,4'-bipyridine and manganese oxy-bis(benzoate)-4,4'-bipyridine, respectively. The bipyridine containing compounds appear to form sequentially through stable intermediates. For the cobalt system, the transformation from a two-dimensional compound, Co(H2O)(2)(OBA)] (OBA = 4,4'-oxy-bis(benzoate)), I, to two different three-dimensional compounds, Co(bpy)(OBA)]center dot bpy, II, (bpy = 4,4'-bipyridine) and Co(bpy)(0.5)(OBA)], III, and reversibility between II and III have been investigated. In the manganese system, transformation from a two-dimensional compound, Mn(H2O)(2)(OBA)], Ia, to two different three-dimensional compounds, Mn (bpy)(OBA)]center dot bpy, Ha and Ha to Mn(bpy)(0.5)(OBA)], Ilia, has been investigated. It has also been possible to identify intermediate products during these transformation reactions. The possible pathways for the formation of the compounds were postulated.
Resumo:
Organoselenium compounds have attracted intense research owing to their unique biological properties as well as pharmaceutical significance. Progress has been made in developing reagents for incorporation of selenium in an efficient and controlled manner. Herein, we present a review on the recently developed selenium reagent, tetraethylammonium tetraselenotungstate, Et4N](2)WSe4 as a versatile selenium transfer reagent in organic synthesis. Tetraselenotungstate has been successfully used for the synthesis of a number of functionalized diselenides, sugar- and nucleoside-derived diselenides, seleno-cystines, selenohomocystines, selenoamides, selenoureas and sugar- and nucleoside-based cyclic-selenide derivatives. Additionally, this reagent has been employed for the ring opening of aziridines to synthesize a variety of beta-aminodiselenides. A new selena-aza-Payne type rearrangement of aziridinemethanoltosylates mediated by tetraselenotungstate for the synthesis of allyl amines is also discussed.
Resumo:
Two new anthracene-functionalized fluorescent tris-imidazolium salts have been synthesized, characterized, and proven to be selective sensors for picric acid, which is a common constituent of many powerful explosives. Theoretical studies revealed an unusual ground-state electron transfer from picrate anion to the sensor molecules.
Resumo:
In an effort to develop new MOCVD precursors, mixed-ligand metal-organic complexes, bis (acetylacetonato-k(2)O,O') (2,2'-bipyridine-k(2)N,N') magnesium(II), and his (acetylacetonato-k(2)O,O') (1,10-phenanthroline-k(2)N,N') magnesium(II) were synthesized. Spectroscopic characterization and crystal structures confirmed them to be monomeric and stable complexes. Crystal structure analysis suggests in each of the magnesium(II) complexes, the metal center has a distorted octahedral coordination geometry. Thermo-gravimetric analysis (TGA/DTA) suggests that these complexes are volatile and thermally stable. The thermal characteristics of newly designed complexes make them attractive precursors for MOCVD applications. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metalorganic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed.
Resumo:
A conventional liner with a good performance against inorganic contaminants with a minimal hydraulic conductivity does not usually perform well for retention/removal of leachates containing organic contaminants. Organic modification of clay can render the naturally organophobic clay tobe organophilic. Incorporation of modified organo clay along with unmodified inorganic clay in liner systems can overcome the inherent incompatibility of conventional liners to organic contaminants and can increase organic sorption. The performance of commercially available organo clay and natural bentonite and mixtures of them in different pore fluids has been studied. It is found that the properties of mixtures improve with increase in organically modified clay particularly in non aqueous fluids from the considerations of liner application.
Resumo:
Low grade thermal energy from sources such as solar, geothermal and industrial waste heat in the temperature range of 380-425 K can be converted to electrical energy with reasonable efficiency using isopentane and R-245fa. While the former is flammable and the latter has considerable global warming potential, their mixture in 0.7/0.3 mole fraction is shown to obviate these disadvantages and yet retain dominant merits of each fluid. A realistic thermodynamic analysis is carried out wherein the possible sources of irreversibilities such as isentropic efficiencies of the expander and the pump and entropy generation in the regenerator, boiler and condenser are accounted for. The performance of the system in the chosen range of heat source temperatures is evaluated. A technique of identifying the required source temperature for a given output of the plant and the maximum operating temperature of the working fluid is developed. This is based on the pinch point occurrence in the boiler and entropy generation in the boiling and superheating regions of the boiler. It is shown that cycle efficiencies of 10-13% can be obtained in the range investigated at an optimal expansion ratio of 7-10. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Flexible and thermally stable, freestanding hybrid organic/inorganic based polymer-composite films have been fabricated using a simple solution casting method. Polyvinylbutyral and amine functionalized mesoporous silica were used to synthesize the composite. An additional polyol-''tripentaerythritol''-component was also used to increase the -OH group content in the composite matrix. The moisture permeability of the composites was investigated by following a calcium degradation test protocol. This showed a reduction in the moisture permeability with the increase in functionalized silica loadings in the matrix. A reduction in permeability was observed for the composites as compared to the neat polymer film. The thermal and mechanical properties of these composites were also investigated by various techniques like thermogravimetric analysis, differential scanning calorimetry, tensile experiments, and dynamic mechanical analysis. It was observed that these properties detonate with the increase in the functionalized silica content and hence an optimized loading is required in order to retain critical properties. This deterioration is due to the aggregation of the fillers in the matrix. Furthermore, the films were used to encapsulate P3HT (poly 3 hexyl thiophene) based organic Schottky structured diodes, and the diode characteristics under accelerated aging conditions were studied. The weathered diodes, encapsulated with composite film showed an improvement in the lifetime as compared to neat polymer film. The initial investigation of these films suggests that they can be used as a moisture barrier layer for organic electronics encapsulation application.
Resumo:
The main theme of this paper is to study the flammability suppression of hydrocarbons by blending with carbon dioxide, and to evaluate these mixtures as possible working fluids in organic Rankine cycle for medium temperature concentrated solar power applications. The analysis takes into account inevitable irreversibilities in the turbine, the pump, and heat exchangers. While the isopentane + CO2 mixture suffers from high irreversibility mainly in the regenerator owing to a large temperature glide, the propane + CO2 mixture performs more or less the same as pure propane albeit with high cycle pressures. In general, large temperature glides at condensing pressures extend the heat recovery into the two-phase dome, which is an advantage. However, at the same time, the shift of the pinch point towards the warm end of the regenerator is found to be a major cause of irreversibility. In fact, as the number of carbon atoms in alkanes decreases, their blend with CO2 moves the pinch point to the colder end of the regenerator. This results in lower entropy generation in the regenerator and improved cycle efficiency of propane + CO2 mixtures. With this mixture, real cycle efficiencies of 15-18% are achievable at a moderate source temperature of 573 K. Applicability for a wide range of source temperatures is found to be an added advantage of this mixture.
Resumo:
We report the mechanical properties of a framework structure, Cu2F(HF)(HF2)(pyz)(4)](SbF6)(2)](n) (pyz = pyrazine), in which Cu(pyz)(2)](2+) layers are pillared by HF2- anions containing the exceptionally strong F-H center dot center dot center dot F hydrogen bonds. Nanoindentation studies on single-crystals clearly demonstrate that such bonds are extremely robust and mechanically comparable with coordination bonds in this system.
Resumo:
Blends of poly (ethylene-co-methacrylic acid) (PEMA) and poly (vinyl alcohol-co-ethylene) (EVOH) were studied for encapsulating Schottky structured organic devices. A calcium degradation test was used to determine water vapor transmission rates and to determine the moisture barrier performance of neat and blend films. Moisture barrier analysis for the neat and blend compositions was discussed concerning the interactions in the blend, diffusivity of water molecules through the unit cell systems, and the occupiable free volumes available in the unit cells using molecular dynamics simulations. The experimental results of water vapor permeation were correlated with diffusion behavior predicted from molecular dynamics simulations results. The effectiveness of the blend as a suitable barrier material in increasing the lifetime of an encapsulated Schottky structured organic device was determined.