332 resultados para Nitrous oxide, Dinitrogen monoxide, Anaesthesiologie
Resumo:
The open circuit potentials of the galvanic cell,Pt (or Au)¦(Ar + H2S + H2)primeparCaS + ZrO2(CaO)par (Ar + H2S+ H2)Prime£t (or Au) has been measured in the temperature range 1000 to 1660 K and PH2S:PH 2 ratios from 1.73×10–5 to 2.65×10–1. The solid electrolyte consists of a dispersion of calcium sulphide in a matrix of calcia-stabilized zirconia. The surface of the electrolyte is coated with a thin layer of calcium sulphide to prevent the formation of water vapour by reaction of hydrogen sulphide with calcium oxide or zirconia present in the electrolyte. The use of a lsquopoint electrodersquo with a catalytically active tip was necessary to obtain steady emfs. At low temperatures and high sulphur potentials the emfs agreed with the Nernst equation. Deviations were observed at high temperatures and low sulphur potentials, probably due to the onset of significant electronic conduction in the oxide matrix of the electrolyte. The values of oxygen and sulphur potentials at which the electronic conductivity is equal to ionic conductivity in the two-phase electrolyte have been evaluated from the emf response of the cell. The sulphide-oxide electrolyte is unsuitable for sulphur potential measurements in atmospheres with high oxygen potentials, where oxidation of calcium sulphide may be expected.
Resumo:
An experimental characterization of three-phase equilibria in Fe--V--O and Fe--Nb--O systems at 1823, 1873 and 1923K has been carried out using a solid state cell and by analysis of quenched samples. The oxygen potentials corresponding to these three-phase equilibria were monitored by a solid state cell incorporating Y sub 2 O sub 3 doped ThO sub 2 with Cr + Cr sub 2 O sub 3 as reference electrode. Similar measurements were carried out for Fe--Nb--O alloys in equilibrium with a mixture of FeNb sub 2 O sub 6 and NbO sub 2 . These measurements permit evaluation of interaction parameters (e exp V sub O = --6590/T + 2.892 and e exp Nb sub O = --4066/T + 1.502) and activity coefficients of vanadiun and niobium in dilute solution (ln gamma exp O sub V = --35 320/T + 12.68 and ln gamma sub Nb exp O = --12 386/T + 4.34) in liquid iron. The results obtained in this study resolve a number of discrepancies in thermodynamic data reported in the literature, especially regarding the activity coefficients of V and Nb and the stability ranges for V sub 2 O sub 3 and VO sub 1+x . 18 ref.--AA
Resumo:
The Gibbs' energy offormation of the intermetallic compound URh3has been measured in the temperature range 980 to 1320 K using an oxide solid state cell incorporating yttria-doped thoria as the solid electrolyte and a mixture of manganese and manganese oxide as the reference electrode. The cell can be represented as Pt, Mn + MnO I (Y203)Th02 I Rh + URh3 + U02 + x' Rh, Pt The reversible emf of the cell was a linear function of temperature E = 15.60 +0.0237 T (±0.8) mY. Using auxiliary thermodynamic data for MnO and U02+ x the Gibbs' energy of formation of URh3 from component metals has been computed. The results can be expressed by the equation L'.G?< URh3 > = -316240 + 13.22 T (± 3000) J mol-1. The "third-law" enthalpy of formation of URh3at 298 K is -293.2 (± 4) kJ mol-1, significantly more negative than the value of -181.5 kJ mol-1 calculated using Miedema's model.
Resumo:
The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.
Resumo:
The tie lines delineating equilibria between different oxides of the Ca-Al-O system and liquid Ca-Al alloy has been determined at 1373 K. Equilibration of the alloy with two adjacent oxide phases in the CaO-Al2O3 pseudo-binary system was established in a closed cell made of iron. Equilibrium oxide phases were confirmed by x-ray analysis and alloy compositions were determined by chemical analysis. The compound 12CaO.7Al2O3 Ca12Al14O33 was found to be a stable phase in equilibrium with calcium alloys. The experimental diagram is consistent with that calculated from the free energies of formation of the oxide phases and activities in liquid Ca-Al alloys at 1373 K reported in the literature.
Resumo:
The lanthanide metals lanthanum, praseodymium and neodymium containing 2,200, 2,600, 1,850 mass ppm oxygen, respectively, were deoxidized to 20-30 ppm level at 1,073 K by an electrochemical method. The metal to be deoxidized was used as the cathode in an electrolysis cell which consisted of a graphite anode and molten CaCl2 electrolyte. The calcium metal produced at the cathode by electrolysis effectively deoxidized the lanthanide metal. Calcium oxide produced by deoxidation, dissolved in the melt. The liberation of carbon monoxide/dioxide at the anode was found to prevent accumulation of oxygen in the melt. For a quantitative discussion of the limits of deoxidation achievable by this technique, a thermodynamic investigation of the lanthanide-oxygen (Ln-O ; Ln = La, Pr, Nd) solid solutions was conducted. The lanthanide metal, yttrium and titanium samples were immersed in calcium-saturated CaCl2 melt, containing a small quantity of dissolved CaO, at 1,093 K. The oxygen potential of the melt and the Ln-O solid solutions were obtained from the oxygen content of yttrium samples at equilibrium, and the known thermodynamic properties of yttrium-oxygen solid solution. The results were confirmed by using Y/Y2O3 equilibrium to control the oxygen potential of the molten salt reservoir. The oxygen affinity of the metals was found to decrease in the order : Y > Ti > Nd > Pr > La. The deoxidation results are consistent with the thermodynamic properties of the RE-O solid solutions.
Resumo:
Scanning tunneling microscopy was used to study the surface nanostructure of the epitaxial film Nd2/3Sr1/3MnO3 that shows giant magnetoresistance. The surface morphology of the film consists of a number of overlapping platelets of about 30–35 Å diameter that grow at an angle of 35°–45° to the surface normal. The peak to peak height of the platelets are multiples of the c‐axis lattice parameter of 7.85 Å showing that the growth of the platelets takes place by the layer by layer addition of one formula unit. The mean surface roughness is about 10 Å. In the range of a few microns the film exhibits no defects or dislocations. The film is unstable in ambient atmosphere and tends to get covered by an adsorbate layer. Tip‐surface interactions cause the adsorbate to be dislodged exposing the surface nanostructure. The degradation of the film in real time when imaged in air was recorded. The adsorbates increase the surface roughness of the film.
Resumo:
The role of the soft phase (Ni0.8Zn0.2Fe2O4) on the magnetization reversal and coercivity mechanism of the Ni0.8Zn0.2Fe2O4/BaFe12O19 nanocomposite has been investigated. The presence of the interacting field and the disorder in the nanocomposite has been confirmed by the variation of Jr/Jr(∞) vs Jd/Jr(∞) and the irreversible magnetization. To understand the relative strength of the pinning and the nucleation, the magnetic viscosity measurement has been done and the thermal activation volume has been estimated. From the Barbier plot and the activation volume measurement, the dominant mechanism governing the magnetization reversal process has been proposed.
Resumo:
In this paper, we have studied the effect of gate-drain/source overlap (LOV) on the drain channel noise and induced gate current noise (SIg) in 90 nm N-channel metal oxide semiconductor field effect transistors using process and device simulations. As the change in overlap affects the gate tunneling leakage current, its effect on shot noise component of SIg has been taken into consideration. It has been shown that “control over LOV” allows us to get better noise performance from the device, i.e., it allows us to reduce noise figure, for a given leakage current constraint. LOV in the range of 0–10 nm is recommended for the 90 nm gate length transistors, in order to get the best performance in radio frequency applications.
Resumo:
The use of reduced graphene oxide (RGO) and graphene nanoribbons (GNRs) as infrared photodetectors is explored, based on recent results dealing with solar cells, light-emitting devices, photodetectors, and ultrafast lasers. IR detection is demonstrated by both RGO and GNRs (see image) in terms of the time-resolved photocurrent and photoresponse. The responsivity of the detectors and their functioning are presented.
Resumo:
The thermal expansion of magnesium oxide has been measured below room temperature from 140°K to 284.5°K, using an interferometric method. The accuracy of measurement is better than 3% in the temperature range studied. The agreement of these results with Durand's is quite good, but consistently higher over most of the range by 2 or 3%, for the most part within the estimated experimental error. The Grüneisen parameter remains constant at about 1.51 over the present experimental range; but an isolated measurement of Durand at 85°K suggests that at lower temperatures it rises quite sharply above this value. This possibility is therefore investigated theoretically. With a non-central force model to represent MgO, γ(−3) and γ(2) are calculated and it is found that γ(−3) > γ(2), again suggesting that the Grüneisen parameter increases with falling temperature. Of the two reported experimental values for the infra-red absorption frequency, correlation with the heat capacity strongly indicates a wavelength of 25.26μm rather than 17.3μm. Thermal expansion measurements at still lower temperatures must be carried out to confirm definitely the rise in the Grüneisen parameter.
Resumo:
P-aminobenzoate- intercalated copper hydroxysalt was prepared by coprecipitation at high pH (similar to 12). As the pH was reduced to similar to 7 on washing with water, the development of partial positive charge on the amine end of the intercalated anion caused repulsion between the layers leading to delamination and colloidal dispersion of monolayers of copper hydroxysalt in water. The dispersed copper hydroxysalt monolayers were used as precursors for the synthesis of copper(I)/(II) oxide nanoparticles at room temperature. While the hydroxysalt layers yielded spindle-shaped CuO particles when left to stand, they formed hollow spherical nanoparticles of Cu(2)O when treated with an alkaline solution of ascorbic acid.