231 resultados para Nitrogen compounds.
Resumo:
Global carbon budget studies indicate that the terrestrial ecosystems have remained a large sink for carbon despite widespread deforestation activities. CO2 fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12-17% of the deposited nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20 : 1. We calculate the sensitivity of the terrestrial biosphere for CO2 fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, the terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since pre-industrial times terrestrial carbon losses due to warming may have been more or less compensated by effects of increased N deposition, whereas the effect of CO2 fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating that climate warming effects on carbon storage may overwhelm N deposition effects in the future.
Resumo:
Cation sensing properties of the three positional isomers of rhodamine based sensors (1-3) are studied in water. The sensors differ only in the position of pyridine's nitrogen. The chemosensor 1, with pyridine nitrogen at ortho-position, showed a selective colorimetric detection of Cu(II) ions in water, at physiological pH 7.4 and also in medium containing BSA (bovine serum albumin) and blood serum. Notably the compound 2 and 3, with pyridine end located at meta-and para-positions did not show any color change with Cu(II) ions, although both the compounds showed turn-on change both in color and fluorescence with Hg(II) ions specifically. All the probes showed ratiometric changes with the specific metal ions. The changing position of nitrogen also changed the complexation pattern of the sensors with the metal ions. Probe 1 showed 2 : 1 complexation with Cu(II), whereas 2 and 3 showed 1 : 1 complexation with Hg(II) ions. The mechanism investigation showed that the change in color upon addition of metal ions is due to the ring-opening of the spirolactam ring of the probes. Cu(II) interacted with ligand 1 through a three-point interaction mode comprising carbonyl oxygen, amido nitrogen and pyridine nitrogen end. But in case of 2 and 3, Hg2+ only interacted through pyridine nitrogen ends. Quantitative estimation of Cu2+ and Hg2+ in complex biological media such as bovine albumin protein (BSA) and human blood serum were performed using these sensors. Rapid on-site detection as well as discrimination of these toxic ions was demonstrated using easily prepared portable test-strips.
Resumo:
Nitrogen-doped reduced giaphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6 M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126 F/g at a scan rate of 10 mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169 F/g at a scan rate of 10 mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258 F/g and 240 F/g at a scan rate of 5 mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5 V compared to 0.0-1 V in aqueous medium. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Dendrimers as vectors for gene delivery were established, primarily by utilizing few prominent dendrimer types so far. We report herein studies of DNA complexation efficacies and gene delivery vector properties of a nitrogen-core poly(propyl ether imine) (PETIM) dendrimer, constituted with 22 tertiary amine internal branches and 24 primary amines at the periphery. The interaction of the dendrimer with pEGFPDNA was evaluated through UV-vis, circular dichroism (CD) spectral studies, ethidium bromide fluorescence emission quenching, thermal melting, and gel retardation assays, from which most changes to DNA structure during complexation was found to occur at a weight ratio of dendrimer:DNA similar to 2:1. The zeta potential measurements further confirmed this stoichiometry at electroneutrality. The structure of a DNA oligomer upon dendrimer complexation was simulated through molecular modeling and the simulation showed that the dendrimer enfolded DNA oligomer along both major and minor grooves, without causing DNA deformation, in 1:1 and 2:1 dendrimer-to-DNA complexes. Atomic force microscopy (AFM) studies on dendrimer-pEGFP DNA complex showed an increase in the average z-height as a result of dendrimers decorating the DNA, without causing a distortion of the DNA structure. Cytotoxicity studies involving five different mammalian cell lines, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) assay, reveal the dendrimer toxicity profile (IC50) values of similar to 400-1000 mu g mL(-1), depending on the cell line tested. Quantitative estimation, using luciferase assay, showed that the gene transfection was at least 100 times higher when compared to poly(ethylene imine) branched polymer, having similar number of cationic sites as the dendrimer. The present study establishes the physicochemical behavior of new nitrogen-core PETIM dendrimer-DNA complexes, their lower toxicities, and efficient gene delivery vector properties.
Resumo:
Nanosized cerium and nitrogen co-doped TiO2 (Ce-TiO2-xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N-2 adsorption and desorption methods, photoluminescence and ultraviolet-visible (UV-vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in -3 state in Ce-TiO2-xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce-O-Ti interface and also inhibits Ce particles from sintering. UV-visible DRS studies show that the metal-metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ -> Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron-hole pair separation between the two interfaces Ce-TiO2-xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce-TiO2-xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce-TiO2-xNx was due to the participation of MMCT and interfacial charge transfer mechanism.
Resumo:
Volatile organic compounds (VOCs) are present in our every day used products such as plastics, cosmetics, air fresheners, paint, etc. The determination of amount of VOC present in atmosphere can be carried out via various sensors. In this work a nanocomposite of a novel thiophene based conducting polymer and carbon black is used as a volatile organic compound sensor. The fabricated 2 lead chemiresistor sensor was tested for vapours of toluene, acetone, cylcohexane, and carbon tetrachloride. The sensor responds to all the vapours, however, exhibit maximum response to toluene vapours. The sensor was evaluated for various concentrations of toluene. The lower limit of detection of the sensor is 15 +/- 10 ppm. The study of the effect of humidity on senor response to toluene showed that the response decreases at higher humidity conditions. The surface morphology of the nanocomposite was characterized by scanning electron microscopy. Diffuse reflectance spectroscopy was used to investigate the absorption of vapours by the nanocomposite film. Contact angle measurements were used to present the effect of water vapour on the toluene response of nanocomposite film. Solubility parameter of the conducting polymer is predicted by molecular dynamics. The sensing behaviour of the conducting polymer is correlated with solubility parameter of the polymer. Dispersion interaction of conducting polymer with toluene is believed to be the reason for the selective response towards toluene. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Chemical doping of graphene becomes necessary to create a band gap which is useful for various applications. Furthermore, chemical doping of elements like boron and nitrogen in graphene gives rise to useful properties. Since chemically doped graphene is both of academic and technical importance, we have prepared this article on the present status of various aspects of this important class of materials. In doing so, we have covered the recent literature on this subject citing all the major references. Some of the aspects that we have covered are the synthesis of chemically doped graphene followed by properties and applications. The applications discussed relate to gas adsorption, lithium batteries, supercapacitors, oxygen reduction reaction, field emission and photochemical water splitting. Characterization of chemically doped graphene also included. We believe that the article will be useful to all those interested in graphene and related materials and provides the present status of the subject. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Employing nitronyl nitroxide lanthanide(III) complexes as metallo-ligands allowed the efficient and highly selective preparation of three series of unprecedented heterotri-spin (Cu Ln-radical) one-dimensional compounds. These 2p-3d-4f spin systems, namely Ln(3)Cu(hfac)II(NitPhOAII)41 (Ln(III)=Gd 1(Gd), Tb 1(Tb), Dy 1(Dy); NitPhOAII=2-(4'-allyloxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide), Ln(3)Cu(hfac)II(NitPhOPO4] (1-nrn=Gd 2Gd, Tb 2Tb, Dy 2(Dy), Ho 2HOf Yb 2yb; NitPhOPr= 2-(4'-propoxyphenyI)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and Ln3Cu(hfac)II(NitPhOB441 (LnIm=Gd 3Gd, Tb 3Tb, Dy 3(Dy); NitPhOBz=2-(4'-benzyloxy- phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) involve O-bound nitronyl nitroxide radicals as bridging ligands in chain structures with a Cu-Nit-Ln-Nit-Ln-Nit-Ln-Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal radical interactions take place in these heterotri-spin chain complexes, these and the next-neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single-chain magnet behavior.
Resumo:
Novel chiral analogues of the antioxidant, anti-inflammatory organoselenium drug ebselen were synthesized. The reaction proceeded readily from 2-(chloroseleno)benzoyl chloride with chiral amino compounds. The chiral substituent on the nitrogen atom did not provide a substantial increase in activities and the newly synthesized compounds showed similar activities to ebselen.
Resumo:
We report a one-pot hydrothermal synthesis of nitrogen doped reduced graphene oxide (N-rGO) and Ag nanoparticle decorated N-rGO hybrid nanostructures from graphene oxide (GO), metal ions and hexamethylenetetramine (HMT). HMT not only reduces GO and metal ions simultaneously but also acts as the source for the nitrogen (N) dopant. We show that the N-rGO can be used as a metal-free surface enhanced Raman spectroscopy (SERS) substrate, while the Ag nano-particles decorated N-rGO can be used as an effective SERS substrate as well as a template for decorating various other nanostructures on N-rGO.
Resumo:
The participation of a nitrogen atom acting as an electrophile in pnicogen bonding, a hitherto unexplored interaction has been established by experimental charge density analysis. QTAIM and NBO analyses ratify this observation.
Resumo:
Pyrophosphate cathodes have been recently reported as a competent family of insertion compounds for sodium-ion batteries. In the current study, we have investigated the binary Na2 - x(Fe1 - yMny)P2O7 (0 <= y <= 1) pyrophosphate family, synthesized by the classical solid-state method. They form a continuous solid solution maintaining triclinic P-1 (#2) symmetry. The local structural coordination differs mainly by different degrees of Na site occupancy and preferential occupation of the Fe2 site by Mn. The structural and magnetic properties of these mixed-metal pyrophosphate phases have been studied. In each case, complete Fe3+/Fe2+ redox activity has been obtained centered at 3 V vs. Na. The Fe3+/Fe2+ redox process involves multiple steps between 2.5 and 3 V owing to Na-cation ordering during electrochemical cycling, which merge to form a broad single Fe3+/Fe2+ redox peak upon progressive Mn-doping. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Resumo:
The reaction between 4,4'-sulfonyldibenzoic acid (H(2)SDBA) and manganese under mild conditions resulted in the isolation of two new three-dimensional compounds, Mn-4(C14H8O6S)(4)(DMA)(2)]center dot 3DMA, I, and Mn-3(C14H8O6S)(3)(DMA)(2)(MeOH)]center dot DMA, IIa. Both structures have Mn-3 trimer oxo cluster units. While the Mn-3 oxoclusters are connected through octahedral manganese forming one-dimensional Mn-O-Mn chains in I, the Mn-3 units are isolated in IIa. The SDBA units connect the Mn-O-Mn chains and the Mn-3 clusters giving rise to the three-dimensional structure. Both compounds have coordinated and free solvent molecules. In IIa, two different solvent molecules are coordinated, of which one solvent can be reversibly exchanged by a variety of other similar solvents via a solvent-mediated single crystal to single crystal (SCSC) transformation. The free lattice DMA solvent molecules in I can be exchanged by water molecules resulting in hydrophilic channels. Proton conductivity studies on I reveals a high proton mobility with conductivity values of similar to 0.87 x 10(-3) Omega(-1) cm(-1) at 34 degrees C and 98% RH, which is comparable to some of the good proton conductivity values observed in inorganic coordination polymers. We have also shown structural transformation of I to IIa through a possible dissolution and recrystallization pathway. In addition, both I and IIa appear to transform to two other manganese compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5) and H3O](2)Mn-7(mu 3-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8) under suitable reaction conditions. We have partially substituted Co in place of Mn in the Mn-3 trimer clusters forming CoMn2(C14H8O6S)(3)(DMA)(2)(EtOH)]center dot DMA, III, a structure that is closely related to IIa. All the compounds reveal antiferromagnetic behavior. On heating, the cobalt substituted phase (compound III) forms a CoMn2O4 spinel phase with particle sizes in the nanometer range.