278 resultados para Locally finite groups
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
Despite two decades of extensive research, direct experimental evidence of a dynamical length scale determining the glass transition of confined polymers has yet to emerge. Using a recently established experimental technique of interface micro-rheology we provide evidence of finite-size effect truncating the growth of a quantity proportional to a dynamical length scale in confined glassy polymers, on cooling towards the glass transition temperature. We show how the interplay of variation of polymer film thickness and this temperature-dependent growing dynamical length scale determines the glass transition temperature, which in our case of 2-3nm thick films, is reduced significantly as compared to their bulk values.
Resumo:
The literature on pricing implicitly assumes an "infinite data" model, in which sources can sustain any data rate indefinitely. We assume a more realistic "finite data" model, in which sources occasionally run out of data. Further, we assume that users have contracts with the service provider, specifying the rates at which they can inject traffic into the network. Our objective is to study how prices can be set such that a single link can be shared efficiently and fairly among users in a dynamically changing scenario where a subset of users occasionally has little data to send. We obtain simple necessary and sufficient conditions on prices such that efficient and fair link sharing is possible. We illustrate the ideas using a simple example
Resumo:
We develop a simulation based algorithm for finite horizon Markov decision processes with finite state and finite action space. Illustrative numerical experiments with the proposed algorithm are shown for problems in flow control of communication networks and capacity switching in semiconductor fabrication.
Resumo:
In this article, the Eringen's nonlocal elasticity theory has been incorporated into classical/local Bernoulli-Euler rod model to capture unique properties of the nanorods under the umbrella of continuum mechanics theory. The spectral finite element (SFE) formulation of nanorods is performed. SFE formulation is carried out and the exact shape functions (frequency dependent) and dynamic stiffness matrix are obtained as function of nonlocal scale parameter. It has been found that the small scale affects the exact shape functions and the elements of the dynamic stiffness matrix. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave dispersion properties of carbon nanotubes.
Resumo:
In this paper, a model for composite beam with embedded de-lamination is developed using the wavelet based spectral finite element (WSFE) method particularly for damage detection using wave propagation analysis. The simulated responses are used as surrogate experimental results for the inverse problem of detection of damage using wavelet filtering. The WSFE technique is very similar to the fast fourier transform (FFT) based spectral finite element (FSFE) except that it uses compactly supported Daubechies scaling function approximation in time. Unlike FSFE formulation with periodicity assumption, the wavelet-based method allows imposition of initial values and thus is free from wrap around problems. This helps in analysis of finite length undamped structures, where the FSFE method fails to simulate accurate response. First, numerical experiments are performed to study the effect of de-lamination on the wave propagation characteristics. The responses are simulated for different de-lamination configurations for both broad-band and narrow-band excitations. Next, simulated responses are used for damage detection using wavelet analysis.
Resumo:
In this paper we discuss the recent progresses in spectral finite element modeling of complex structures and its application in real-time structural health monitoring system based on sensor-actuator network and near real-time computation of Damage Force Indicator (DFI) vector. A waveguide network formalism is developed by mapping the original variational problem into the variational problem involving product spaces of 1D waveguides. Numerical convergence is studied using a h()-refinement scheme, where is the wavelength of interest. Computational issues towards successful implementation of this method with SHM system are discussed.
Resumo:
A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The relations for the growth and consumption rates of a layer with finite thickness as an end member and the product phases in the interdiffusion zone are developed. We have used two different methodologies, the diffusion based and the physico-chemical approach to develop the same relations. We have shown that the diffusion based approach is rather straightforward; however, the physico-chemical approach is much more versatile than the other method. It was found that the position of the marker plane becomes vague in the second stage of the interdiffusion process in pure A thin layer/B couple, where two phases grow simultaneously.
Resumo:
A study is made of the rotation field in wedge indentation of metals using copper as the model material system. Wedges with apical angles of 60 and 120 are used to indent annealed copper, and the deformation is mapped using image correlation. The indentation of annealed and strain-hardened copper is simulated using finite element analysis. The rotation field, derived from the deformation measurements, provides a clear way of distinguishing between cutting and compressive modes of deformation. Largely unidirectional rotation on one side of the symmetry line with small spatial rotation gradients is characteristic of compression. Bidirectional rotation with neighboring regions of opposing rotations and locally high rotation gradients characterizes cutting. In addition, the rotation demarcates such characteristic regions as the pile-up zone in indentation of a strain-hardened metal. The residual rotation field obtained after unloading is essentially the same as that at full load, indicating that it is a scalar proxy for plastic deformation as a whole.
Resumo:
A grid adaptation strategy for unstructured data based codes, employing a combination of hexahedral and prismatic elements, generalizable to tetrahedral and pyramidal elements has been developed.