234 resultados para Interactions faibles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal X-ray structural analysis of a septanoside, namely, n-pentyl-2-chloro-2-deoxy sept-3-uloside (1) provides many finer details of the molecular structure, in addition to its preferred twist-chair conformation, namely, (TC3,4)-T-5,6 conformation. Structural analysis reveals a dense network of O-H...O, C-H...O and van der Waals interactions that stabilize interdigitized, planar bi-layer structure of the crystal lattice. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many primitively eusocial wasp species new nests are founded either by a single female or by a small group of females. In the single foundress nests, the lone female develops her ovaries, lays eggs as well as tends her brood. In multiple foundress nests social interactions, especially dominance-subordinate interactions, result in only one `dominant' female developing her ovaries and laying eggs. Ovaries of the remaining `subordinate' cofoundresses remain suppressed and these individuals function as workers and tend the dominant's brood. Using the tropical, primitively eusocial polistine wasp Ropalidia marginata and by comparing wasps held in isolation and those kept as pairs in the laboratory, we demonstrate that social interactions affect ovarian development of dominant and subordinate wasps among the pairs in opposite directions, suppressing the ovaries of the subordinate member of the pair below that of solitary wasps and boosting the ovaries of dominant member of the pair above that of solitary females. In addition to being of physiological interest, such mirror image effects of aggression on the ovaries of the aggressors and their victims, suggest yet another mechanism by which subordinates can enhance their indirect fitness and facilitate the evolution of worker behavior by kin selection. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of a series of seven angular ``V'' shaped NPIs (1-7) is presented. The effect of substitution of these structurally similar NPIs on their photophysical properties in the solution-state and the solid-state is presented and discussed in light of experimental and computational findings. Compounds 1-7 show negligible to intensely strong emission yields in their solid-state depending on the nature of substituents appended to the oxoaryl moiety. The solution and solid-state properties of the compounds can be directly correlated with their structural rigidity, nature of substituents and intermolecular interactions. The versatile solid-state structures of the NPI siblings are deeply affected by the pendant substituents. All of the NPIs (1-7) show antiparallel dimeric pi-pi stacking interactions in their solid-state which can further extend in a parallel, alternate, orthogonal or lateral fashion depending on the steric and electronic nature of the C-4' substituents. Structural investigations including Hirshfeld surface analysis methods reveal that where strongly interacting systems show weak to moderate emission in their condensed states, weakly interacting systems show strong emission yields under the same conditions. The nature of packing and extended structures also affects the emission colors of the NPIs in their solid-states. Furthermore, DFT computational studies were utilized to understand the molecular and cumulative electronic behaviors of the NPIs. The comprehensive studies provide insight into the condensed-state luminescence of aggregationprone small molecules like NPIs and help to correlate the structure-property relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification and analysis of nonbonded interactions within a molecule and with the surrounding molecules are an essential part of structural studies, given the importance of these interactions in defining the structure and function of any supramolecular entity. MolBridge is an easy to use algorithm based purely on geometric criteria that can identify all possible nonbonded interactions, such as hydrogen bond, halogen bond, cation-pi, pi-pi and van der Waals, in small molecules as well as biomolecules. The user can either upload three-dimensional coordinate files or enter the molecular ID corresponding to the relevant database. The program is available in a standalone form and as an interactive web server with Jmol and JME incorporated into it. The program is freely downloadable and the web server version is also available at http://nucleix.mbu.iisc.ernet.in/molbridge/index.php.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure determination of the lectin domain of MSMEG_3662 from Mycobacterium smegmatis and its complexes with mannose and methyl-alpha-mannose, the first effort of its kind on a mycobacterial lectin, reveals a structure very similar to beta-prism II fold lectins from plant sources, but with extensive unprecedented domain swapping in dimer formation. The two subunits in a dimer often show small differences in structure, but the two domains, not always related by 2-fold symmetry, have the same structure. Each domain carries three sugar-binding sites, similar to those in plant lectins, one on each Greek key motif. The occurrence of beta-prism II fold lectins in bacteria, with characteristics similar to those from plants, indicates that this family of lectins is of ancient origin and had evolved into a mature system before bacteria and plants diverged. In plants, the number of binding sites per domain varies between one and three, whereas the number is two in the recently reported lectin domains from Pseudomonas putida and Pseudomonas aeruginosa. An analysis of the sequences of the lectins and the lectin domains shows that the level of sequence similarity among the three Greek keys in each domain has a correlation with the number of binding sites in it. Furthermore, sequence conservation among the lectins from different species is the highest for that Greek key which carries a binding site in all of them. Thus, it would appear that carbohydrate binding influences the course of the evolution of the lectin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical charge density analyses on 2,2-dibromo-2,3-dihydroinden-1-one have been carried out to quantify the topological features of a short CBr....O halogen bond with nearly linear geometry (2.922 angstrom, angle CBr....O = 172.7 degrees) and to assess the strength of the interactions using the topological features of the electron density. The electrostatic potential map indicates the presence of the s-hole on bromine, while the interaction energy is comparable to that of a moderate OH....O hydrogen bond. In addition, the energetic contribution of CH.....Br interaction is demonstrated to be on par with that of the CBr....O halogen bond in stabilizing the crystal structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive analysis of the crystal packing and the energetic features of a series of four biologically active molecules belonging to the family of substituted 4-(benzylideneamino)-3-(4-fluoro-3-phenoxyphenyl)-1H-1,2,4-triazole-5-(4 H)-thione derivatives have been performed based on the molecular conformation and the supramolecular packing. This involves the formation of a short centrosymmetric R-2(2)(8) NH...S supramolecular synthon in the solid state, including the presence of CH...S, CH...O, CH...N, CH...F, CH...Cl, CF...FC, CCl...ClC, and CH...pi intermolecular interactions along with pp stacking to evaluate the role of noncovalent interactions in the crystal. The presence of such synthons has a substantial contribution toward the interaction energy (-18 to -20 kcal/mol) as obtained from the PIXEL calculation, wherein the Coulombic and polarization contribution are more significant than the dispersion contribution. The geometrical characteristics of such synthons favor short distance, and the population of related molecules having these geometries is rare as has been obtained from the Cambridge Structural Database (CSD). Furthermore, their interaction energies have been compared with those present in our molecules in the solid state. The topological characteristics of the NH...S supramolecular synthon, in addition to related weak interactions, CH...N, CH...Cl, CF...FC, and CCl...ClC, have been estimated using the quantum theory of atoms in molecules (QTAIM). In addition, an analysis of the Hirshfeld surface and associated fingerprint plots of these four molecules also have provided a platform for the evaluation of the contribution of different atom...atom contacts, which contribute toward the packing of the molecules in solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new 1D NMR experiment cited as `Quick G-SERF', which re-introduces selective proton-proton scalar interactions in a pure shift spectrum during real time data acquisition, is reported. The method provides information on multiple proton-proton couplings from a single experiment, analogous to the 2D G-SERF technique, while significantly shortening the experimental time by 1-2 orders of magnitude due to reduced dimension and enhanced sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental charge density analysis of an anti-TB drug ethionamide was carried out from high resolution X-ray diffraction at 100 K to understand its charge density distribution and electrostatic properties. The experimental results were validated from periodic theoretical charge density calculations performed using CRYSTAL09 at the B3LYP/6-31G** level of theory. The electron density rho(bcp)(r) and the Laplacian of electron density del(2)(rho bcp)(r) of the molecule calculated from both the methods display the charge density distribution of the ethionamide molecule in the crystal field. The electrostatic potential map shows a large electropositive region around the pyridine ring and a large electronegative region at the vicinity of the thiol atom. The calculated experimental dipole moment is 10.6D, which is higher than the value calculated from theory (8.2D). The topological properties of C-H center dot center dot center dot S, N-H center dot center dot center dot N and N-H center dot center dot center dot S hydrogen bonds were calculated, revealing their strength. The charge density analysis of the ethionamide molecule determined from both the experiment and theory gives the topological and electrostatic properties of the molecule, which allows to precisely understand the nature of intra and intermolecular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (similar to 80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of similar to 2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water < dM(W) (0)delta M-W (t) > is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (similar to 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by B97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality. (c) 2014 Wiley Periodicals, Inc. Biopolymers 103: 134-147, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rich data bearing on the structural and evolutionary principles of protein protein interactions are paving the way to a better understanding of the regulation of function in the cell. This is particularly the case when these interactions are considered in the framework of key pathways. Knowledge of the interactions may provide insights into the mechanisms of crucial `driver' mutations in oncogenesis. They also provide the foundation toward the design of protein protein interfaces and inhibitors that can abrogate their formation or enhance them. The main features to learn from known 3-D structures of protein protein complexes and the extensive literature which analyzes them computationally and experimentally include the interaction details which permit undertaking structure-based drug discovery, the evolution of complexes and their interactions, the consequences of alterations such as post-translational modifications, ligand binding, disease causing mutations, host pathogen interactions, oligomerization, aggregation and the roles of disorder, dynamics, allostery and more to the protein and the cell. This review highlights some of the recent advances in these areas, including design, inhibition and prediction of protein protein complexes. The field is broad, and much work has been carried out in these areas, making it challenging to cover it in its entirety. Much of this is due to the fast increase in the number of molecules whose structures have been determined experimentally and the vast increase in computational power. Here we provide a concise overview. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power conversion efficiency of a solar cell is a complex parameter which usually hides the molecular details of the charge generation process. For rationally tailoring the overall device efficiency of the dye-sensitized solar cell, detailed molecular understanding of photoinduced reactions at the dye-TiO2 interface has to be achieved. Recently, near-IR absorbing diketopyrrolopyrrole-based (DPP) low bandgap polymeric dyes with enhanced photostabilities have been used for TiO2 sensitization with moderate efficiencies. To improve the reported device performances, a critical analysis of the polymerTiO(2) interaction and electron transfer dynamics is imperative. Employing a combination of time-resolved optical measurements complemented by low temperature EPR and steady-state Raman spectroscopy on polymerTiO(2) conjugates, we provide direct evidence for photoinduced electron injection from the TDPP-BBT polymer singlet state into TiO2 through the C-O group of the DPP-core. A detailed excited state description of the electron transfer process in films reveals instrument response function (IRF) limited (<110 fs) charge injection from a minor polymer fraction followed by a picosecond recombination. The major fraction of photoexcited polymers, however, does not show injection indicating pronounced ground state heterogeneity induced due to nonspecific polymerTiO(2) interactions. Our work therefore underscores the importance of gathering molecular-level insight into the competitive pathways of ultrafast charge generation along with probing the chemical heterogeneity at the nanoscale within the polymerTiO2 films for optimizing photovoltaic device efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding of protein-protein interactions is indispensable in comprehending most of the biological processes in a cell. Small-scale experiments as well as large-scale high-throughput techniques over the past few decades have facilitated identification and analysis of protein-protein interactions which form the basis of much of our knowledge on functional and regulatory aspects of proteins. However, such rich catalog of interaction data should be used with caution when establishing protein-protein interactions in silico, as the high-throughput datasets are prone to false positives. Numerous computational means developed to pursue genome-wide studies on protein-protein interactions at times overlook the mechanistic and molecular details, thus questioning the reliability of predicted protein-protein interactions. We review the development, advantages, and shortcomings of varied approaches and demonstrate that by providing a structural viewpoint in terms of shape complementarity and interaction energies at protein-protein interfaces coupled with information on expression and localization of proteins homologous to an interacting pair, it is possible to assess the credibility of predicted interactions in biological context. With a focus on human pathogen Mycobacterium tuberculosis H37Rv, we show that such scrupulous use of details at the molecular level can predict physicochemically viable protein-protein interactions across host and pathogen. Such predicted interactions have the potential to provide molecular basis of probable mechanisms of pathogenesis and hence open up ways to explore their usefulness as targets in the light of drug discovery. (c) 2014 IUBMB Life, 66(11):759-774, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.