281 resultados para INTERACTING GALAXIES
Resumo:
This study presents a novel magnetic arm-switch-based integrated magnetic circuit for a three-phase series-shunt compensated uninterruptible power supply (UPS). The magnetic circuit acts as a common interacting field for a number of energy ports, viz., series inverter, shunt inverter, grid and load. The magnetic arm-switching technique ensures equivalent series or shunt connection between the inverters. In normal grid mode (stabiliser mode), the series inverter is used for series voltage correction and the shunt one for current correction. The inverters and the load are effectively connected in parallel when the grid power is not available. These inverters are then used to share the load power. The operation of the inverters in parallel is ensured by the magnetic arm-switching technique. This study also includes modelling of the magnetic circuit. A graphical technique called bond graph is used to model the system. In this model, the magnetic circuit is represented in terms of gyrator-capacitors. Therefore the model is also termed as gyrator-capacitor model. The model is used to extract the dynamic equations that are used to simulate the system using MATLAB/SIMULINK. This study also discusses a synchronously rotating reference frame-based control technique that is used for the control of the series and shunt inverters in different operating modes. Finally, the gyrator-capacitor model is validated by comparing the simulated and experimental results.
Resumo:
This is an introduction to the theory of interacting Brownian particles, as applied to charge-stabilised colloidal suspensions near their equilibrium liquid-solid transition. The density functional approach to the statics of the transition is reviewed briefly, and the generalised Langevin equation method for the dynamics presented in detail. Work with A.V. Indrani [1] on a self-consistent approach for calculating the excess single-particle friction is presented, which explains the observed [2] ''universal'' suppression of self-diffusion at freezing as a consequence of the universal structure-factor height at this transition. Criticisms, open questions, and challenges to theory are discussed.
Resumo:
The generalised Langevin equation method for the dynamics of interacting colloids presented in my previous lecture is extended here to the case of a sheared suspension. A calculation of shear-dependent diffusivities using these methods is found to account for puzzling observations in experiments and simulations. The limitations of the method are discussed, and important unresolved questions presented. This lecture summarises work done in collaboration with A.V. Indrani [1].
Resumo:
The search for heavy resonances in the dijet channel is part of the on-going physics programme, both at the Tevatron and at the LHC. Lower limits have been placed on the masses of dijet resonances predicted in a wide variety of models. However, across experiments, the search strategy assumes that the effect of the new particles is well-approximated by on-shell production and subsequent decay into a pair of jets. We examine the impact of off-shell effects on such searches, particularly for strongly interacting resonances.
Resumo:
Investigations into the variation of self-diffusivity with solute radius, density, and degree of disorder of the host medium is explored. The system consists of a binary mixture of a relatively smaller sized solute, whose size is varied and a larger sized solvent interacting via Lennard-Jones potential. Calculations have been performed at three different reduced densities of 0.7, 0.8, and 0.933. These simulations show that diffusivity exhibits a maximum for some intermediate size of the solute when the solute diameter is varied. The maximum is found at the same size of the solute at all densities which is at variance with the prediction of the levitation effect. In order to understand this anomaly, additional simulations were carried out in which the degree of disorder has been varied while keeping the density constant. The results show that the diffusivity maximum gradually disappears with increase in disorder. Disorder has been characterized by means of the minimal spanning tree. Simulations have also been carried out in which the degree of disorder is constant and only the density is altered. The results from these simulations show that the maximum in diffusivity now shifts to larger distances with decrease in density. This is in agreement with the changes in void and neck distribution with density of the host medium. These results are in excellent agreement with the predictions of the levitation effect. They suggest that the effect of disorder is to shift the maximum in diffusivity towards smaller solute radius while that of the decrease in density is to shift it towards larger solute radius. Thus, in real systems where the degree of disorder is lower at higher density and vice versa, the effect due to density and disorder have opposing influences. These are confirmed by the changes seen in the velocity autocorrelation function, self part of the intermediate scattering function and activation energy. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3701619]
Resumo:
Colloidal suspensions made up of oppositely charged particles have been shown to self-assemble into substitutionally ordered superlattices. For a given colloidal suspension, the structure of the superlattice formed from self-assembly depends on its composition, charges on the particles, and charge screening. In this study we have computed the pressure-composition phase diagrams of colloidal suspensions made up of binary mixtures of equal sized and oppositely charged particles interacting via hard core Yukawa potential for varying values of charge screening and charge asymmetry. The systems are studied under conditions where the thermal energy is equal or greater in magnitude to the contact energy of the particles and the Debye screening length is smaller than the size of the particles. Our studies show that charge asymmetry has a significant effect on the ability of colloidal suspensions to form substitutionally ordered superlattices. Slight deviations of the charges from the stoichiometric ratio are found to drastically reduce the thermodynamic stability of substitutionally ordered superlattices. These studies also show that for equal-sized particles, there is an optimum amount of charge screening that favors the formation of substitutionally ordered superlattices. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3700226]
Resumo:
In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of C alpha atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism.
Resumo:
In the presence of a synthetic non-Abelian gauge field that produces a Rashba-like spin-orbit interaction, a collection of weakly interacting fermions undergoes a crossover from a Bardeen-Cooper-Schrieffer (BCS) ground state to a Bose-Einstein condensate (BEC) ground state when the strength of the gauge field is increased (Vyasanakere et al 2011 Phys. Rev. B 84 014512). The BEC that is obtained at large gauge coupling strengths is a condensate of tightly bound bosonic fermion pairs. The properties of these bosons are solely determined by the Rashba gauge field-hence called rashbons. In this paper, we conduct a systematic study of the properties of rashbons and their dispersion. This study reveals a new qualitative aspect of the problem of interacting fermions in non-Abelian gauge fields, i.e. that the rashbon state ceases to exist when the center-of-mass momentum of the fermions exceeds a critical value that is of the order of the gauge coupling strength. The study allows us to estimate the transition temperature of the rashbon BEC and suggests a route to enhance the exponentially small transition temperature of the system with a fixed weak attraction to the order of the Fermi temperature by tuning the strength of the non-Abelian gauge field. The nature of the rashbon dispersion, and in particular the absence of the rashbon states at large momenta, suggests a regime in parameter space where the normal state of the system will be a dynamical mixture of uncondensed rashbons and unpaired helical fermions. Such a state should show many novel features including pseudogap physics.
Resumo:
Background information. The pathology causing stages of the human malaria parasite Plasmodium falciparum reside within red blood cells that are devoid of any regulated transport system. The parasite, therefore, is entirely responsible for mediating vesicular transport within itself and in the infected erythrocyte cytoplasm, and it does so in part via its family of 11 Rab GTPases. Putative functions have been ascribed to Plasmodium Rabs due to their homology with Rabs of yeast, particularly with Saccharomyces that has an equivalent number of rab/ypt genes and where analyses of Ypt function is well characterized. Results. Rabs are important regulators of vesicular traffic due to their capacity to recruit specific effectors. In order to identify P. falciparum Rab (PfRab) effectors, we first built a Ypt-interactome by exploiting genetic and physical binding data available at the Saccharomyces genome database (SGD). We then constructed a PfRab-interactome using putative parasite Rab-effectors identified by homology to Ypt-effectors. We demonstrate its potential by wet-bench testing three predictions; that casein kinase-1 (PfCK1) is a specific Rab5B interacting protein and that the catalytic subunit of cAMP-dependent protein kinase A (PfPKA-C) is a PfRab5A and PfRab7 effector. Conclusions. The establishment of a shared set of physical Ypt/PfRab-effector proteins sheds light on a core set Plasmodium Rab-interactants shared with yeast. The PfRab-interactome should benefit vesicular trafficking studies in malaria parasites. The recruitment of PfCK1 to PfRab5B+ and PfPKA-C to PfRab5A+ and PfRab7+ vesicles, respectively, suggests that PfRab-recruited kinases potentially play a role in early and late endosome function in malaria parasites.
Resumo:
Experimental conditions or the presence of interacting components can lead to variations in the structural models of macromolecules. However, the role of these factors in conformational selection is often omitted by in silico methods to extract dynamic information from protein structural models. Structures of small peptides, considered building blocks for larger macromolecular structural models, can substantially differ in the context of a larger protein. This limitation is more evident in the case of modeling large multi-subunit macromolecular complexes using structures of the individual protein components. Here we report an analysis of variations in structural models of proteins with high sequence similarity. These models were analyzed for sequence features of the protein, the role of scaffolding segments including interacting proteins or affinity tags and the chemical components in the experimental conditions. Conformational features in these structural models could be rationalized by conformational selection events, perhaps induced by experimental conditions. This analysis was performed on a non-redundant dataset of protein structures from different SCOP classes. The sequence-conformation correlations that we note here suggest additional features that could be incorporated by in silico methods to extract dynamic information from protein structural models.
Resumo:
Resistance to therapy limits the effectiveness of drug treatment in many diseases. Drug resistance can be considered as a successful outcome of the bacterial struggle to survive in the hostile environment of a drug-exposed cell. An important mechanism by which bacteria acquire drug resistance is through mutations in the drug target. Drug resistant strains (multi-drug resistant and extensively drug resistant) of Mycobacterium tuberculosis are being identified at alarming rates, increasing the global burden of tuberculosis. An understanding of the nature of mutations in different drug targets and how they achieve resistance is therefore important. An objective of this study is to first decipher sequence as well as structural bases for the observed resistance in known drug resistant mutants and then to predict positions in each target that are more prone to acquiring drug resistant mutations. A curated database containing hundreds of mutations in the 38 drug targets of nine major clinical drugs, associated with resistance is studied here. Mutations have been classified into those that occur in the binding site itself, those that occur in residues interacting with the binding site and those that occur in outer zones. Structural models of the wild type and mutant forms of the target proteins have been analysed to seek explanations for reduction in drug binding. Stability analysis of an entire array of 19 mutations at each of the residues for each target has been computed using structural models. Conservation indices of individual residues, binding sites and whole proteins are computed based on sequence conservation analysis of the target proteins. The analyses lead to insights about which positions in the polypeptide chain have a higher propensity to acquire drug resistant mutations. Thus critical insights can be obtained about the effect of mutations on drug binding, in terms of which amino acid positions and therefore which interactions should not be heavily relied upon, which in turn can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. The methodology can serve as a general framework to study drug resistant mutants in other micro-organisms as well.
Resumo:
Cross strand aromatic interactions between a facing pair of phenylalanine residues in antiparallel beta-sheet structures have been probed using two structurally defined model peptides. The octapeptide Boc-(LFVPPLFV)-P-D-P-L-OMe (peptide 1) favors the beta-hairpin conformation nucleated by the type II' beta-turn formed by the (D)Pro-(L)Pro segment, placing Phe2 and Phe7 side chains in proximity. Two centrally positioned (D)Pro-(L)Pro segments facilitate the three stranded beta-sheet formation in the 14 residue peptide Boc-LFV(D)P(L)PLFVA(D)P(L)PLFV-OMe (peptide 2) in which the Phe2/Phe7 orientations are similar to that in the octapeptide. The anticipated folded conformations of peptides 1 and 2 are established by the delineation of intramolecularly hydrogen bonded NH groups and by the observation of specific cross strand NOEs. The observation of ring current shifted aromatic protons is a diagnostic of close approach of the Phe2 and Phe7 side chains. Specific assignment of aromatic proton resonances using HSQC and HSQC-TOCSY methods allow an analysis of interproton NOEs between the spatially proximate aromatic rings. This approach facilitates specific assignments in systems containing multiple aromatic rings in spectra at natural abundance. Evidence is presented for a dynamic process which invokes a correlated conformational change about the C-alpha-C-beta(chi(1)) bond for the pair of interacting Phe residues. NMR results suggest that aromatic ring orientations observed in crystals are maintained in solution. Anomalous temperature dependence of ring current induced proton chemical shifts suggests that solvophobic effects may facilitate aromatic ring clustering in apolar solvents.
Resumo:
Background: The correlation of genetic distances between pairs of protein sequence alignments has been used to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of co-evolution between interacting proteins. However, although mutations in different proteins associated with maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods), many other factors contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for. Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary history; here we test this hypothesis. Results: In order to identify the evolutionary mechanisms giving rise to the correlations between interaction proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae. We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence. Conclusions: Since interacting proteins do not have tree topologies that are more similar than the control group of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed correlations.
Resumo:
Background: Interaction of non-structural protein 5A (NS5A) of Hepatitis C virus (HCV) with human kinases namely, casein kinase 1 alpha (ck1 alpha) and protein kinase R (PKR) have different functional implications such as regulation of viral replication and evasion of interferon induced immune response respectively. Understanding the structural and molecular basis of interactions of the viral protein with two different human kinases can be useful in developing strategies for treatment against HCV. Results: Serine 232 of NS5A is known to be phosphorylated by human ck1 alpha. A structural model of NS5A peptide containing phosphoacceptor residue Serine 232 bound to ck1 alpha has been generated using the known 3-D structures of kinase-peptide complexes. The substrate interacting residues in ck1 alpha has been identified from the model and these are found to be conserved well in the ck1 family. ck1 alpha - substrate peptide complex has also been used to understand the structural basis of association between ck1 alpha and its other viral stress induced substrate, tumour suppressor p53 transactivation domain which has a crystal structure available. Interaction of NS5A with another human kinase PKR is primarily genotype specific. NS5A from genotype 1b has been shown to interact and inhibit PKR whereas NS5A from genotype 2a/3a are unable to bind and inhibit PKR efficiently. This is one of the main reasons for the varied response to interferon therapy in HCV patients across different genotypes. Using PKR crystal structure, sequence alignment and evolutionary trace analysis some of the critical residues responsible for the interaction of NS5A 1b with PKR have been identified. Conclusions: The substrate interacting residues in ck1 alpha have been identified using the structural model of kinase substrate peptide. The PKR interacting NS5A 1b residues have also been predicted using PKR crystal structure, NS5A sequence analysis along with known experimental results. Functional significance and nature of interaction of interferon sensitivity determining region and variable region 3 of NS5A in different genotypes with PKR which was experimentally shown are also supported by the findings of evolutionary trace analysis. Designing inhibitors to prevent this interaction could enable the HCV genotype 1 infected patients respond well to interferon therapy.
Resumo:
Multidrug-resistant Salmonella serovars have been a recent concern in curing infectious diseases like typhoid. Salmonella BaeS and BaeR are the two-component system (TCS) that signal transduction proteins found to play an important role in its multidrug resistance. A canonical TCS comprises a histidine kinase (HK) and its cognate partner response regulator (RR). The general approaches for therapeutic targeting are either the catalytic ATP-binding domain or the dimerization domain HisKA (DHp) of the HK, and in some cases, the receiver or the regulatory domain of the RR proteins. Earlier efforts of identifying novel drugs targeting the signal transduction protein have not been quite successful, as it shares similar ATP-binding domain with the key house keeping gene products of the mammalian GHL family. However, targeting the dimerization domain of HisKA through which the signals are received from the RR can be a better approach. In this article, we show stepwise procedure to specifically identify the key interacting residues involved in the dimerization with the RR along with effective targeting by ligands screened from the public database. We have found a few inhibitors which target effectively the important residues for the dimerization activity. Our results suggest a plausible de novo design of better DHp domain inhibitors.