389 resultados para Hydrogen Ion Equilibria
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm(-1) at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg2+ ion determined by means of a combination of d.c. and ac. techniques is similar to 0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Hall thrusters, such as Stationary Plasma Thruster (SPT), have been widely used on board modern satellites placed in geo-synchronows orbits for reasons such as orbit maintenance, repositioning and attitude control. In order to study the performance of the stationary plasma thruster, the thrust produced by it has been measured, using a thrust balance with strain gauge sensors under vacuum conditions, by activating the thruster. This activation of thruster has been carried out by switching ON and switching OFF of the necessary power supplies and control of other feed system such as the propellant flow in a particular sequence. Hitherto, these operations were done manually in the required sequence. This paper reports the attempt made to automate the sequential operation of the power supplies and the necessary control valves of the feed system using Intel 8051 microcontroller. This automation has made thrust measurements easier and more sophisticated.
Resumo:
Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state,compliable mechanical strength (similar to 1 MPa), and wide electrochemical voltage stability (>= 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO4)-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO4-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polyme concentration shows an effective increase in trans conformer concentration along with free Li+ ion concentration. This strongly supports the view that enhancement in LiClO4-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO4-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO4-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance H-1 and Li-7 line width measurements.
Resumo:
Fabrication of multilayer microcapsules via layer-by-layer approach through hydrogen bonding has attracted enormous interest due to its strong response to pH. In this communication, we have prepared hydrogen-bonded multilayer microcapsule without using any cross-linking agent by using DNA base pair (adenine and thymine) modified biocompatible polymers. The growth of the self-assembly on colloidal (melamine formaldehyde: MF) particles has been monitored with zeta potential measurement. The capsules were obtained on dissolution of MF particles at 0.1N HCl. The capsules were characterized with scanning electron microscopy. Moreover, we have observed the salt induced microscopic change in self-assembly of this system on the surface of colloidal particles.
Resumo:
The water-gas shift (WGS) reaction was carried out in the presence of Pd and Pt substituted nanocrystalline ceria catalysts synthesized by solution combustion technique. The catalysts were characterized by powder XRD and XPS. The noble metals were found to be present in ionic form substituted for the cerium atoms. The catalysts showed highactivity for the WGS reaction with high conversions below 250 degrees C. The products of reaction were only carbon dioxide and hydrogen, and no hydrocarbons were observed even in trace quantities. The reactions were carried out with different amounts of noble metal ion substitution and 2% Pt substituted ceria was found to be the best catalyst. The various possible mechanisms for the reaction were proposed and tested for their consistency with experimental data. The dual site mechanism best described the kinetics of the reaction and the corresponding rate parameters were obtained.
Resumo:
A novel alkaline direct borohydride fuel cell (ADBFC) using varying concentrations of hydrogen peroxide as oxidant and sodium borohydride with sodium hydroxide, each of differing concentration, as fuel is reported. A peak power density of ca. 150 in W cm(-2) at a cell voltage of 540 mV can be achieved from the optimized ADBFC operating at 70 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
he infrared absorption spectra of glycine silver nitrate (GAgNO3) and glycine nitrate (GHNO3) show that the glycine group exists completely in the zwitter ion form in the former and in both forms in the latter. The spectrum of GAgNO3 at liquid air temperature did not reveal any striking change which can be attributed to a freezing of the rapid reorientation of the NH3+ group taking place at higher temperatures. The position of the COO− stretching frequencies indicate that this group is co-ordinated only weakly to the Ag+ ion. The summation frequencies reported by Schroeder, Wier and Lippincott (1962) for AgNO3 were not observed in the present study on GAgNO3. It shows however that ferroelectricity in GAgNO3 is in all probability due to the motion of the Ag+ ion in the oxygen co-ordination polyhedron and is not directly connected with the ordering of the hydrogen bonds below Curie point.
Resumo:
The Charge-transfer equilibria of a number of substituted pyridines with iodine have been investigated. Solvent effects on the charge-transfer equilibrium of the pyridineiodine system have been examined. Hydrogen bonding data of substituted pyridines with phenol have been reported.
Resumo:
Dielectric observations on lithium hydrazinium sulphate have shown earlier that it is ferroelectric over a range of temperatures from below −15° C. to above 80° C. and a new type of hydrogen bond rearrangement which would allow the protons to migrate along the chain has also been suggested by others. The infrared spectrum of LiH z S in the form of mull and as single crystal sections parallel and perpendicular to the ‘C’ axis exhibit about 21 well-defined absorption maxima. The position and the width of the maxima agree with the known structure of the crystal according to which the hydrazine group exists in the form of the hydrazinium ion, NH2·NH3+ and the observed N+-H frequencies agree better with the new correlation curve given by R. S. Krishnan and K. Krishnan (1964). However it has been pointed out that from a comparative study of the new infrared spectra of hydrazonium sulphate and lithium ammonium sulphate that the absorption band at 969 cm.−1 is due to N-N stretching vibration and that the fairly intense band between 2050–2170 cm.−1 is due to the bending vibrations of the NH3+ group.
Resumo:
Addition of hydrogen cyanide to 9-methyl-Δ4-octalone-3 (IIb), as a model, yielded both cis- and trans-ketonitriles the configurations of which are assigned on the basis of IR spectra of the hydrolysed products. Similar addition of hydrogen cyanide to 9β-methyl-8β-hydroxy-Δ4-octalone-3 (IIc) gave the corresponding cis- and trans-hydroxy-keto-nitriles, configurations of which were proved by their conversion into cis- and trans-keto-nitriles obtained in the model study. In contrast to the model experiment where the trans-product predominated, the cis-isomer was the major product of addition to IIc.
Resumo:
The Raman spectrum of a single crystal of sulphamic acid has been recorded withλ 2537 excitation. Thirty-eight lines have been observed, of which twenty-nine have been recorded for the first time. Seven Raman lines with shifts in the region 50–155 cm.−1 have been assigned to the lattice oscillations, two at 177 and 240 cm.−1 have been attributed to the low-frequency hydrogen bond vibrations.. The splitting of the degenerate modes and the appearance of N-H....O bonded stretching vibrations are consistent with the structural data which expect the presence of the free molecule as a Zwitter ion with only slight distortion from C3v symmetry.
Resumo:
The Raman spectrum of a single crystal of cadmium acetate dihydrate has been recorded for the first time using λ 2537 excitation. Twenty-three lines have been observed out of which ten have been attributed to the internal oscillations of the acetate ion, nine to the lattice modes, two to low-frequency hydrogen bond vibrations. A line at 308 cm.−1 and the continuum 3250–3560 cm.−1 have been assigned to the Cd-O6 and internal vibrations of the water molecules.
Resumo:
The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature.