210 resultados para Hopf invariant
Resumo:
The complexity in visualizing volumetric data often limits the scope of direct exploration of scalar fields. Isocontour extraction is a popular method for exploring scalar fields because of its simplicity in presenting features in the data. In this paper, we present a novel representation of contours with the aim of studying the similarity relationship between the contours. The representation maps contours to points in a high-dimensional transformation-invariant descriptor space. We leverage the power of this representation to design a clustering based algorithm for detecting symmetric regions in a scalar field. Symmetry detection is a challenging problem because it demands both segmentation of the data and identification of transformation invariant segments. While the former task can be addressed using topological analysis of scalar fields, the latter requires geometry based solutions. Our approach combines the two by utilizing the contour tree for segmenting the data and the descriptor space for determining transformation invariance. We discuss two applications, query driven exploration and asymmetry visualization, that demonstrate the effectiveness of the approach.
Resumo:
The tetrablock, roughly speaking, is the set of all linear fractional maps that map the open unit disc to itself. A formal definition of this inhomogeneous domain is given below. This paper considers triples of commuting bounded operators (A,B,P) that have the tetrablock as a spectral set. Such a triple is named a tetrablock contraction. The motivation comes from the success of model theory in another inhomogeneous domain, namely, the symmetrized bidisc F. A pair of commuting bounded operators (S,P) with Gamma as a spectral set is called a Gamma-contraction, and always has a dilation. The two domains are related intricately as the Lemma 3.2 below shows. Given a triple (A, B, P) as above, we associate with it a pair (F-1, F-2), called its fundamental operators. We show that (A,B,P) dilates if the fundamental operators F-1 and F-2 satisfy certain commutativity conditions. Moreover, the dilation space is no bigger than the minimal isometric dilation space of the contraction P. Whether these commutativity conditions are necessary, too, is not known. what we have shown is that if there is a tetrablock isometric dilation on the minimal isometric dilation space of P. then those commutativity conditions necessarily get imposed on the fundamental operators. En route, we decipher the structure of a tetrablock unitary (this is the candidate as the dilation triple) and a tertrablock isometry (the restriction of a tetrablock unitary to a joint invariant sub-space). We derive new results about r-contractions and apply them to tetrablock contractions. The methods applied are motivated by 11]. Although the calculations are lengthy and more complicated, they beautifully reveal that the dilation depends on the mutual relationship of the two fundamental operators, so that certain conditions need to be satisfied. The question of whether all tetrablock contractions dilate or not is unresolved.
Resumo:
Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T') and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structureproperty relation due to the rich band structure of MoS2. Remarkably, the metastable 1T'-MoS2 metallic state remains invariant with pressure, with the J(2), A(1g), and E(2)g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.
Resumo:
Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the `switch' residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.
Resumo:
We use general arguments to show that colored QCD states when restricted to gauge invariant local observables are mixed. This result has important implications for confinement: a pure colorless state can never evolve into two colored states by unitary evolution. Furthermore, the mean energy in such a mixed colored state is infinite. Our arguments are confirmed in a matrix model for QCD that we have developed using the work of Narasimhan and Ramadas(3) and Singer.(2) This model, a (0 + 1)-dimensional quantum mechanical model for gluons free of divergences and capturing important topological aspects of QCD, is adapted to analytical and numerical work. It is also suitable to work on large N QCD. As applications, we show that the gluon spectrum is gapped and also estimate some low-lying levels for N = 2 and 3 (colors). Incidentally the considerations here are generic and apply to any non-Abelian gauge theory.
Resumo:
What are the implications for the existence of subthreshold ion channels, their localization profiles, and plasticity on local field potentials (LFPs)? Here, we assessed the role of hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in altering hippocampal theta-frequency LFPs and the associated spike phase. We presented spatiotemporally randomized, balanced theta-modulated excitatory and inhibitory inputs to somatically aligned, morphologically realistic pyramidal neuron models spread across a cylindrical neuropil. We computed LFPs from seven electrode sites and found that the insertion of an experimentally constrained HCN-conductance gradient into these neurons introduced a location- dependent lead in the LFP phase without significantly altering its amplitude. Further, neurons fired action potentials at a specific theta phase of the LFP, and the insertion of HCN channels introduced large lags in this spike phase and a striking enhancement in neuronal spike-phase coherence. Importantly, graded changes in either HCN conductance or its half-maximal activation voltage resulted in graded changes in LFP and spike phases. Our conclusions on the impact of HCN channels on LFPs and spike phase were invariant to changes in neuropil size, to morphological heterogeneity, to excitatory or inhibitory synaptic scaling, and to shifts in the onset phase of inhibitory inputs. Finally, we selectively abolished the inductive lead in the impedance phase introduced by HCN channels without altering neuronal excitability and found that this inductive phase lead contributed significantly to changes in LFP and spike phase. Our results uncover specific roles for HCN channels and their plasticity in phase-coding schemas and in the formation and dynamic reconfiguration of neuronal cell assemblies.
Resumo:
It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the ``Sky'' group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown that the ``Sky'' group is generated by the algebra of angle-dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of the Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle-dependent fermion mass, modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content, and time dilation formulas for decays should also get corrections.
Resumo:
Rotations in depth are challenging for object vision because features can appear, disappear, be stretched or compressed. Yet we easily recognize objects across views. Are the underlying representations view invariant or dependent? This question has been intensely debated in human vision, but the neuronal representations remain poorly understood. Here, we show that for naturalistic objects, neurons in the monkey inferotemporal (IT) cortex undergo a dynamic transition in time, whereby they are initially sensitive to viewpoint and later encode view-invariant object identity. This transition depended on two aspects of object structure: it was strongest when objects foreshortened strongly across views and were similar to each other. View invariance in IT neurons was present even when objects were reduced to silhouettes, suggesting that it can arise through similarity between external contours of objects across views. Our results elucidate the viewpoint debate by showing that view invariance arises dynamically in IT neurons out of a representation that is initially view dependent.
Resumo:
We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.
Resumo:
Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.
Resumo:
I consider theories of gravity built not just from the metric and affine connection, but also other (possibly higher rank) symmetric tensor(s). The Lagrangian densities are scalars built from them, and the volume forms are related to Cayley's hyperdeterminants. The resulting diff-invariant actions give rise to geometric theories that go beyond the metric paradigm (even metric-less theories are possible), and contain Einstein gravity as a special case. Examples contain theories with generalizeations of Riemannian geometry. The 0-tensor case is related to dilaton gravity. These theories can give rise to new types of spontaneous Lorentz breaking and might be relevant for ``dark'' sector cosmology.
Resumo:
In this article, we look at the political business cycle problem through the lens of uncertainty. The feedback control used by us is the famous NKPC with stochasticity and wage rigidities. We extend the New Keynesian Phillips Curve model to the continuous time stochastic set up with an Ornstein-Uhlenbeck process. We minimize relevant expected quadratic cost by solving the corresponding Hamilton-Jacobi-Bellman equation. The basic intuition of the classical model is qualitatively carried forward in our set up but uncertainty also plays an important role in determining the optimal trajectory of the voter support function. The internal variability of the system acts as a base shifter for the support function in the risk neutral case. The role of uncertainty is even more prominent in the risk averse case where all the shape parameters are directly dependent on variability. Thus, in this case variability controls both the rates of change as well as the base shift parameters. To gain more insight we have also studied the model when the coefficients are time invariant and studied numerical solutions. The close relationship between the unemployment rate and the support function for the incumbent party is highlighted. The role of uncertainty in creating sampling fluctuation in this set up, possibly towards apparently anomalous results, is also explored.
Resumo:
Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoemits electrons due to nonequilibrium effects.
Resumo:
We study a positivity condition for the curvature of oriented Riemannian 4-manifolds: the half-PIC condition. It is a slight weakening of the positive isotropic curvature (PIC) condition introduced by M. Micallef and J. Moore. We observe that the half-PIC condition is preserved by the Ricci flow and satisfies a maximality property among all Ricci flow invariant positivity conditions on the curvature of oriented 4-manifolds. We also study some geometric and topological aspects of half-PIC manifolds.
Resumo:
In recent years, a low pressure transition around P similar to 3 GPa exhibited by the A(2)B(3)-type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P similar to 2.4 GPa followed by structural transitions at similar to 10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P similar to 3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated Z(2) invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition.