216 resultados para Height.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CuIn1-xAlxSe2 (CIASe) thin films were grown by a simple sol-gel route followed by annealing under vacuum. Parameters related to the spin-orbit (Delta(SO)) and crystal field (Delta(CF)) were determined using a quasi-cubic model. Highly oriented (002) aluminum doped (2%) ZnO, 100 nm thin films, were co-sputtered for CuIn1-xAlxSe2/AZnO based solar cells. Barrier height and ideality factor varied from 0.63 eV to 0.51 eV and 1.3186 to 2.095 in the dark and under 1.38 A. M 1.5 solar illumination respectively. Current-voltage characteristics carried out at 300 K were confined to a triangle, exhibiting three limiting conduction mechanisms: Ohms law, trap-filled limit curve and SCLC, with 0.2 V being the cross-over voltage, for a quadratic transition from Ohm's to Child's law. Visible photodetection was demonstrated with a CIASe/AZO photodiode configuration. Photocurrent was enhanced by one order from 3 x 10(-3) A in the dark at 1 V to 3 x 10(-2) A upon 1.38 sun illumination. The optimized photodiode exhibits an external quantum efficiency of over 32% to 10% from 350 to 1100 nm at high intensity 17.99 mW cm(-2) solar illumination. High responsivity R-lambda similar to 920 A W-1, sensitivity S similar to 9.0, specific detectivity D* similar to 3 x 10(14) Jones, make CIASe a potential absorber for enhancing the forthcoming technological applications of photodetection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer (t (eff)) and the solder yield strength (sigma (ys,eff)) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t (eff), based on the uniform thickness of IMC (t (u)) and the average height of the IMC scallops (t (s)), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t (eff) that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t (eff), mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted to measure the heat flux in the vicinity of a three-dimensional protuberance placed on a flat plate facing a hypersonic flow at zero angle of attack. The effects of flow enthalpy and height of the protuberance on the interference heating in its vicinity were studied. Evidence of disturbed flow with highly three-dimensional characteristics and heightened vorticity was observed near the protrusion. A parametric study by changing the deflection angle of the protuberance was also made. Correlations exist in the open literature for enthalpy values lower than 2  MJ/kg. This effort has yielded a new correlation that is valid for enthalpies up to 6  MJ/kg. The Z-type schlieren technique was used to visualize the flow features qualitatively for one of the flow conditions studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendrimers as vectors for gene delivery were established, primarily by utilizing few prominent dendrimer types so far. We report herein studies of DNA complexation efficacies and gene delivery vector properties of a nitrogen-core poly(propyl ether imine) (PETIM) dendrimer, constituted with 22 tertiary amine internal branches and 24 primary amines at the periphery. The interaction of the dendrimer with pEGFPDNA was evaluated through UV-vis, circular dichroism (CD) spectral studies, ethidium bromide fluorescence emission quenching, thermal melting, and gel retardation assays, from which most changes to DNA structure during complexation was found to occur at a weight ratio of dendrimer:DNA similar to 2:1. The zeta potential measurements further confirmed this stoichiometry at electroneutrality. The structure of a DNA oligomer upon dendrimer complexation was simulated through molecular modeling and the simulation showed that the dendrimer enfolded DNA oligomer along both major and minor grooves, without causing DNA deformation, in 1:1 and 2:1 dendrimer-to-DNA complexes. Atomic force microscopy (AFM) studies on dendrimer-pEGFP DNA complex showed an increase in the average z-height as a result of dendrimers decorating the DNA, without causing a distortion of the DNA structure. Cytotoxicity studies involving five different mammalian cell lines, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) assay, reveal the dendrimer toxicity profile (IC50) values of similar to 400-1000 mu g mL(-1), depending on the cell line tested. Quantitative estimation, using luciferase assay, showed that the gene transfection was at least 100 times higher when compared to poly(ethylene imine) branched polymer, having similar number of cationic sites as the dendrimer. The present study establishes the physicochemical behavior of new nitrogen-core PETIM dendrimer-DNA complexes, their lower toxicities, and efficient gene delivery vector properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a one-way nested Indian Ocean regional model. The model combines the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory's (GFDL) Modular Ocean Model (MOM4p1) at global climate model resolution (nominally one degree), and a regional Indian Ocean MOM4p1 configuration with 25 km horizontal resolution and 1 m vertical resolution near the surface. Inter-annual global simulations with Coordinated Ocean-Ice Reference Experiments (CORE-II) surface forcing over years 1992-2005 provide surface boundary conditions. We show that relative to the global simulation, (i) biases in upper ocean temperature, salinity and mixed layer depth are reduced, (ii) sea surface height and upper ocean circulation are closer to observations, and (iii) improvements in model simulation can be attributed to refined resolution, more realistic topography and inclusion of seasonal river runoff. Notably, the surface salinity bias is reduced to less than 0.1 psu over the Bay of Bengal using relatively weak restoring to observations, and the model simulates the strong, shallow halocline often observed in the North Bay of Bengal. There is marked improvement in subsurface salinity and temperature, as well as mixed layer depth in the Bay of Bengal. Major seasonal signatures in observed sea surface height anomaly in the tropical Indian Ocean, including the coastal waveguide around the Indian peninsula, are simulated with great fidelity. The use of realistic topography and seasonal river runoff brings the three dimensional structure of the East India Coastal Current and West India Coastal Current much closer to observations. As a result, the incursion of low salinity Bay of Bengal water into the southeastern Arabian Sea is more realistic. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temperature dependent electrical properties of the dropcasted Cu2SnS3 films have been measured in the temperature range 140 K to 317 K. The log I versus root V plot shows two regions. The region at lower bias is due to electrode limited Schottky emission and the higher bias region is due to bulk limited Poole Frenkel emission. The ideality factor is calculated from the ln I versus V plot for different temperatures fitted with the thermionic emission model and is found to vary from 6.05 eV to 12.23 eV. This large value is attributed to the presence of defects or amorphous layer at the Ag / Cu2SnS3 interface. From the Richardson's plot the Richardson's constant and the barrier height were calculated. Owing to the inhomogeneity in the barrier heights, the Richardson's constant and the barrier height were also calculated from the modified Richardson's plot. The I-V-T curves were also fitted using the thermionic field emission model. The barrier heights were found to be higher than those calculated using thermionic emission model. From the fit of the I-V-T curves to the field emission model, field emission was seen to dominate in the low temperature range of 140 K to 177 K. The temperature dependent current graphs show two regions of different mechanisms. The log I versus 1000/T plot gives activation energies E-a1 = 0.367095 - 0.257682 eV and E-a2 = 0.038416 - 0.042452 eV. The log ( I/T-2) versus 1000/T graph gives trap depths Phi(o1) = 0.314159 - 0.204752 eV and Phi(o2) = 0.007425- 0.011163 eV. With increasing voltage the activation energy E-a1 and the trap depth Phi(o1) decrease. From the ln (IT1/ 2) versus 1/T-1/ 4 graph, the low temperature region is due to variable range hopping mechanism and the high temperature region is due to thermionic emission. (C) 2014 Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports characteristics of inertia-gravity waves (IGWs) in the atmospheric boundary layer during the passage of Tropical Cylone-03B, using the Doppler Sound Detection and Ranging (SODAR) observations at the Indian tropical station of Gadanki (13.45 degrees N, 79.2 degrees E; near the east coast of India). Wavelet analysis of horizontal winds indicates significant wave motion (60h) near the characteristic inertial period. The hodograph analysis of the filtered winds shows an anti-cyclonic turning of horizontal wind with height and time, indicating the presence of IGW. This study finds important implications in boundary layer dynamics during the passage of tropical cyclones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal marine environments are important links between the continents and the open ocean. The coast off Mangalore forms part of the upwelling zone along the southeastern Arabian Sea. The temperature, salinity, density, dissolved oxygen and stable oxygen isotope ratio (delta O-18) of surface waters as well as those of bottom waters off coastal Mangalore were studied every month from October 2010 to May 2011. The coastal waters were stratified in October and November due to precipitation and runoff. The region was characterised by upwelled bottom waters in October, whereas the region exhibited a temperature inversion in November. The surface and bottom waters presented almost uniform properties from December until April. The coastal waters were observed to be most dense in January and May. Comparatively cold and poorly oxygenated bottom waters during the May sampling indicated the onset of upwelling along the region. delta O-18 of the coastal waters successfully documented the observed variations in the hydrographical characteristics of the Mangalore coast during the monthly sampling period. We also noted that the monthly variability in the properties of the coastal waters of Mangalore was related to the hydrographical characteristics of the adjacent open ocean inferred from satellite-derived surface winds, sea surface height anomaly data and sea surface temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The healing times for the growth of thin films on patterned substrates are studied using simulations of two discrete models of surface growth: the Family model and the Das Sarma-Tamborenea (DT) model. The healing time, defined as the time at which the characteristics of the growing interface are ``healed'' to those obtained in growth on a flat substrate, is determined via the study of the nearest-neighbor height difference correlation function. Two different initial patterns are considered in this work: a relatively smooth tent-shaped triangular substrate and an atomically rough substrate with singlesite pillars or grooves. We find that the healing time of the Family and DT models on aL x L triangular substrate is proportional to L-z, where z is the dynamical exponent of the models. For the Family model, we also analyze theoretically, using a continuum description based on the linear Edwards-Wilkinson equation, the time evolution of the nearest-neighbor height difference correlation function in this system. The correlation functions obtained from continuum theory and simulation are found to be consistent with each other for the relatively smooth triangular substrate. For substrates with periodic and random distributions of pillars or grooves of varying size, the healing time is found to increase linearly with the height (depth) of pillars (grooves). We show explicitly that the simulation data for the Family model grown on a substrate with pillars or grooves do not agree with results of a calculation based on the continuum Edwards-Wilkinson equation. This result implies that a continuum description does not work when the initial pattern is atomically rough. The observed dependence of the healing time on the substrate size and the initial height (depth) of pillars (grooves) can be understood from the details of the diffusion rule of the atomistic model. The healing time of both models for pillars is larger than that for grooves with depth equal to the height of the pillars. The calculated healing time for both Family and DT models is found to depend on how the pillars and grooves are distributed over the substrate. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology has been presented for determining the stability of unsupported vertical cylindrical excavations by using an axisymmetric upper bound limit analysis approach in conjunction with finite elements and linear optimization. For the purpose of excavation design, stability numbers (S-n) have been generated for both (1) cohesive-frictional soils and (2) pure cohesive soils, with an additional provision accounting for linearly increasing cohesion with increasing depth by means of a nondimensional factor m. The variation of S-n with H/b has been established for different values of m and phi, where H and b refer to the height and radius of the cylindrical excavation. A number of useful observations have been gathered about the variation of the stability number and nodal velocity patterns as H/b, phi, and m change. The results of the analysis compare quite well with the different solutions reported in the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXAFS studies at the As K edge as a function of temperature were carried out in SmFeAsO1-xFx (x = 0 and 0.2) compounds to understand the role of local structural distortions in superconductivity observed in F-doped compounds. A significant correlation between the thermal variation of local structural parameters such as anion height and superconducting onset is found in the fluorinated compounds. Such a variation in anion height is absent in the non-superconducting compound. An increase in the Fe-As bond distance just below the superconducting onset temperature indicates a similarity between the distortions observed in the high-T-C cuprates and these Fe-based superconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phonon mode is excited from one end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present the fabrication and characterization of Ti and Au coated hollow silicon microneedles for transdermal drug delivery applications. The hollow silicon microneedles are fabricated using isotropic etching followed by anisotropic etching to obtain a tapered tip. Silicon microneedle of 300 mu m in height, with 130 mu m outer diameter and 110 mu m inner diameter at the tip followed by 80 mu m inner diameter and 160 mu m outer diameter at the base have been fabricated. In order to improve the biocompatibility of microneedles, the fabricated microneedles were coated with Ti (500 nm) by sputtering technique followed by gold coating using electroplating. A breaking force of 225 N was obtained for the fabricated microneedles, which is 10 times higher than the skin resistive force. Hence, fabricated microneedles can easily be inserted inside the skin without breakage. The fluid flow through the microneedles was studied for different inlet pressures. A minimum inlet pressure of 0.66 kPa was required to achieve a flow rate of 50 mu l in 2 s with de-ionized water as a fluid medium. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simplified equations are derived for a granular flow in the `dense' limit where the volume fraction is close to that for dynamical arrest, and the `shallow' limit where the stream-wise length for flow development (L) is large compared with the cross-stream height (h). The mass and diameter of the particles are set equal to 1 in the analysis without loss of generality. In the dense limit, the equations are simplified by taking advantage of the power-law divergence of the pair distribution function chi proportional to (phi(ad) - phi)(-alpha), and a faster divergence of the derivativ rho(d chi/d rho) similar to (d chi/d phi), where rho and phi are the density and volume fraction, and phi(ad) is the volume fraction for arrested dynamics. When the height h is much larger than the conduction length, the energy equation reduces to an algebraic balance between the rates of production and dissipation of energy, and the stress is proportional to the square of the strain rate (Bagnold law). In the shallow limit, the stress reduces to a simplified Bagnold stress, where all components of the stress are proportional to (partial derivative u(x)/partial derivative y)(2), which is the cross-stream (y) derivative of the stream-wise (x) velocity. In the simplified equations for dense shallow flows, the inertial terms are neglected in the y momentum equation in the shallow limit because the are O(h/L) smaller than the divergence of the stress. The resulting model contains two equations, a mass conservation equations which reduces to a solenoidal condition on the velocity in the incompressible limit, and a stream-wise momentum equation which contains just one parameter B which is a combination of the Bagnold coefficients and their derivatives with respect to volume fraction. The leading-order dense shallow flow equations, as well as the first correction due to density variations, are analysed for two representative flows. The first is the development from a plug flow to a fully developed Bagnold profile for the flow down an inclined plane. The analysis shows that the flow development length is ((rho) over barh(3)/B) , where (rho) over bar is the mean density, and this length is numerically estimated from previous simulation results. The second example is the development of the boundary layer at the base of the flow when a plug flow (with a slip condition at the base) encounters a rough base, in the limit where the momentum boundary layer thickness is small compared with the flow height. Analytical solutions can be found only when the stream-wise velocity far from the surface varies as x(F), where x is the stream-wise distance from the start of the rough base and F is an exponent. The boundary layer thickness increases as (l(2)x)(1/3) for all values of F, where the length scale l = root 2B/(rho) over bar. The analysis reveals important differences between granular flows and the flows of Newtonian fluids. The Reynolds number (ratio of inertial and viscous terms) turns out to depend only on the layer height and Bagnold coefficients, and is independent of the flow velocity, because both the inertial terms in the conservation equations and the divergence of the stress depend on the square of the velocity/velocity gradients. The compressibility number (ratio of the variation in volume fraction and mean volume fraction) is independent of the flow velocity and layer height, and depends only on the volume fraction and Bagnold coefficients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, L beta', to the one dimensional (1D) rippled, P beta' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel L beta' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of similar to 2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.