424 resultados para HEAT CURRENT
Resumo:
In a modernising world, building and construction trends in recent urban centres such as Bangalore, set precedence for developments in other urban centres of the country. Under such conditions, evaluating the current state of building practices could prove useful for identifying the likely nature of nationwide building trends. This paper comprises a study to evaluate the current state of domestic concealed wiring practices in the context of a modern urban centre area in India. Presently, concealed wiring is the predominant wiring method adopted for residences, both bungalows and apartments. A modern residential block in the city of Bangalore (India) was chosen as the study area. The study included extensive interaction and surveys amongst residents, professionals (architects and engineers) and site personnel (contractors and electricians). In addition, the study also included site verification on the state of wiring practices in the residential block. The study indicates that while aesthetics was the prime reason that dictated the choice of concealed wiring, its effectiveness as an appropriate and safe wiring method is severely compromised. Details of the study, results and recommendations are presented in this paper.
Resumo:
Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using a implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number. Untersucht wurde die instationäre laminare Mischkonvektion längs eines vertikalen, in einem porösen Medium eingebetteten Zylinders unter kombinierten Auftriebseffekten von thermischer und spezieller Diffusion. Der Einfluß der Permeabilität des Mediums sowie des magnetischen Feldes wurden in die Betrachtung einbezogen. Die partiellen Differentialgleichungen mit drei unabhängigen Variablen, welche die Strömung beschreiben, wurde numerisch anhand des Schemas der endlichen Differenzen in Verbindung mit der Technik der Quasilinearisation gelöst. Berechnungen für die beschleunigte, verzögerte und oszillierende Geschwindigkeitsverteilung der freien Strömung sind durchgeführt worden. Untersucht wurden ebenfalls die Effekte der Permeabilität des Mediums, der Auftriebskräfte, der transversalen Krümmung, des magnetischen Feldes auf die Oberflächenreibung sowie die Wärmeund Stoffübertragung. Es wurde festgestellt, daß die Geschwindigkeit mehr Einfluß auf die Oberflächenreibung als auf die Wärmeund Stoffübertragung hat. Die Oberflächenreibung sowie die Wärme- und Stoffübertragung werden durch die Auftriebskräfte und die Krümmungsparameter verbessert. Die Wärmeübertragung ist stark abhängig von den Parametern der viskosen Dissipation und der Prandtl-Zahl; die Stoffübertragung von der Schmidt-Zahl.
Resumo:
In this paper we report the measurements of specific heats of five glass formers as they are cooled through the glass-transition region. The measurements are compared with other specific-heat measurements such as adiabatic-calorimetry and ac-calorimetry measurements. The data are then analyzed using a model of enthalpy relaxation and nonequilibrium cooling, which can track the nonequilibrium relaxation time tau(S). The relevant parameters that describe tau(S) are obtained, allowing us to compare the enthalpy-relaxation times obtained from this method with other methods. We display the clear connection of the unrelaxed enthalpy with the nonequilibrium relaxation time and also show the role played by the delayed heat release from the unrelaxed enthalpy in the glass-transition region. We have also made certain definite observations regarding the equilibrium configurational specific heat and the Vogel-Fulcher law, which describes tau(S).
Resumo:
Madras triple helix’ was the name assigned by the scientific community in the West, to the molecular model proposed for the fibrous protein collagen, by G N Ramachandran’s group at the University of Madras. As mentioned jocularly in a recent retrospective of this work by Sasisekharan and Yathindra [1], the term was possibly coined due to the difficulty of Western scientists in pronouncing the Indian names of Ramachandran and his associates. The unravelling of the precise nature of collagen structure indeed makes for a fascinating story and as succinctly put by Dickerson [2]: “... to trace the evolution of the structure of collagen is to trace the evolution of fibrous protein crystallography in miniature”. This article is a brief review highlighting the pioneering contributions made by G N Ramachandran in elucidating the correct structure of this important molecule and is a sincere tribute by the author to her mentor, doctoral thesis supervisor and major source of inspiration for embarking on a career in biophysics
Resumo:
In order to answer the practically important question of whether the down conductors of lightning protection systems to tall towers and buildings can be electrically isolated from the structure itself, this work is conducted. As a first step in this regard, it is presumed that the down conductor placed on metallic tower will be a pessimistic representation of the actual problem. This opinion was based on the fact that the proximity of heavy metallic structure will have a large damping effect. The post-stroke current distributions along the down conductors and towers, which can be quite different from that in the lightning channel, govern the post-stroke near field and the resulting gradient in the soil. Also, for a reliable estimation of the actual stroke current from the measured down conductor currents, it is essential to know the current distribution characteristics along the down conductors. In view of these, the present work attempts to deduce the post-stroke current and voltage distribution along typical down conductors and towers. A solution of the governing field equations on an electromagnetic model of the system is sought for the investigation. Simulation results providing the spatio-temporal distribution of the post-stroke current and voltage has provided very interesting results. It is concluded that it is almost impossible to achieve electrical isolation between the structure and the down conductor. Furthermore, there will be significant induction into the steel matrix of the supporting structure.
Resumo:
Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.
Resumo:
Trace of iron(III) are determined by differential pulse polarography in a medium of sodium hydroxide and sodium bromate using the catalytic current. Various cations do not interfere. The relative standard deviation is 2%.
Resumo:
A computerized non-linear-least-squares regression procedure to analyse the galvanostatic current-potential data for kinetically hindered reactions on porous gas-diffusion electrodes is reported. The simulated data fit well with the corresponding measured values. The analytical estimates of electrode-kinetic parameters and uncompensated resistance are found to be in good agreement with their respective values obtained from Tafel plots and the current-interrupter method. The procedure circumvents the need to collect the data in the limiting-current region where the polarization values are usually prone to errors. The polarization data for two typical cases, namely, methanol oxidation on a carbon-supported platinum-tin electrode and oxygen reduction on a Nafion-coated platinized carbon electrode, are successfully analysed.
Resumo:
The main objective of this investigation was to understand the strength development of clays below fusion or vitrification temperatures of 900°C. The other objective was to establish threshold temperatures to produce a satisfactory construction material from clayey sediments from the Western Beaufort Sea for shore protection of artificial islands with minimum expense of thermal energy. Studies were, therefore, conducted using kaolinite, bentonite, and a clayey sediment from the Beaufort Sea. Unconfined-compressive-strength tests were conducted on clay samples heat treated from 110 to 700°C. Furthermore, to understand the factors responsible for strength-development-thermogravimetric studies and pore-size analysis, using mercury porosimetry, were also conducted. A gradual increase in strength was obtained with an increase in firing temperature. However, substantial and permanent increase in strength occurred only after dehydroxylation of all the clays studied; Clay samples heated to temperatures above dehydroxylation became resistant to disintegration upon immersion in water. Results indicate that the clayey sediments from Western Beaufort Sea have to be heat treated to about 600°C to produce granular material for use as a fill or shore-protection material for artificial islands.
Resumo:
Progress in the development of contraceptive vaccines for males and females is reviewed. Based on the criteria which need to be met with, none of the proposed candidate antigens meets the requirements for use as a contraceptive vaccine for human application. One of the major problems is the need for periodic injections to maintain required titre and use of an alternate method until effective titres are obtained. Some of the problems associated with active immunization approach can be overcome by the use of preformed, highly specific, potent antibodies. Some progress has been achieved in this direction by the use of humanized single chain monoclonal antibodies to human chorionic gonadotropin.
Resumo:
Context. Polar corona is often explored to find the energy source for the acceleration of the fast solar wind. Earlier observations show omni-presence of quasi-periodic disturbances, traveling outward, which is believed to be caused by the ubiquitous presence of outward propagating waves. These waves, mostly of compressional type, might provide the additional momentum and heat required for the fast solar wind acceleration. It has been conjectured that these disturbances are not due to waves but high speed plasma outflows, which are difficult to distinguish using the current available techniques. Aims. With the unprecedented high spatial and temporal resolution of AIA/SDO, we search for these quasi-periodic disturbances in both plume and interplume regions of the polar corona. We investigate their nature of propagation and search for a plausible interpretation. We also aim to study their multi-thermal nature by using three different coronal passbands of AIA. Methods. We chose several clean plume and interplume structures and studied the time evolution of specific channels by making artificial slits along them. Taking the average across the slits, space-time maps are constructed and then filtration techniques are applied to amplify the low-amplitude oscillations. To suppress the effect of fainter jets, we chose wider slits than usual. Results. In almost all the locations chosen, in both plume and interplume regions we find the presence of propagating quasi-periodic disturbances, of periodicities ranging from 10-30 min. These are clearly seen in two channels and in a few cases out to very large distances (approximate to 250 `') off-limb, almost to the edge of the AIA field of view. The propagation speeds are in the range of 100-170 km s(-1). The average speeds are different for different passbands and higher in interplume regions. Conclusions. Propagating disturbances are observed, even after removing the effects of jets and are insensitive to changes in slit width. This indicates that a coherent mechanism is involved. In addition, the observed propagation speed varies between the different passpands, implying that these quasi-periodic intensity disturbances are possibly due to magneto-acoustic waves. The propagation speeds in interplume region are higher than in the plume region.
Resumo:
A swarm is a temporary structure formed when several thousand honey bees leave their hive and settle on some object such as the branch of a tree. They remain in this position until a suitable site for a new home is located by the scout bees. A continuum model based on heat conduction and heat generation is used to predict temperature profiles in swarms. Since internal convection is neglected, the model is applicable only at low values of the ambient temperature T-a. Guided by the experimental observations of Heinrich (1981a-c, J. Exp. Biol. 91, 25-55; Science 212, 565-566; Sci. Am. 244, 147-160), the analysis is carried out mainly for non-spherical swarms. The effective thermal conductivity is estimated using the data of Heinrich (1981a, J. Exp. Biol. 91, 25-55) for dead bees. For T-a = 5 and 9 degrees C, results based on a modified version of the heat generation function due to Southwick (1991, The Behaviour and Physiology of Bees, PP 28-47. C.A.B. International, London) are in reasonable agreement with measurements. Results obtained with the heat generation function of Myerscough (1993, J. Theor. Biol. 162, 381-393) are qualitatively similar to those obtained with Southwick's function, but the error is more in the former case. The results suggest that the bees near the periphery generate more heat than those near the core, in accord with the conjecture of Heinrich (1981c, Sci. Am. 244, 147-160). On the other hand, for T-a = 5 degrees C, the heat generation function of Omholt and Lonvik (1986, J. Theor. Biol. 120, 447-456) leads to a trivial steady state where the entire swarm is at the ambient temperature. Therefore an acceptable heat generation function must result in a steady state which is both non-trivial and stable with respect to small perturbations. Omholt and Lonvik's function satisfies the first requirement, but not the second. For T-a = 15 degrees C, there is a considerable difference between predicted and measured values, probably due to the neglect of internal convection in the model.
Resumo:
Optimizing a shell and tube heat exchanger for a given duty is an important and relatively difficult task. There is a need for a simple, general and reliable method for realizing this task. The authors present here one such method for optimizing single phase shell-and-tube heat exchangers with given geometric and thermohydraulic constraints. They discuss the problem in detail. Then they introduce a basic algorithm for optimizing the exchanger. This algorithm is based on data from an earlier study of a large collection of feasible designs generated for different process specifications. The algorithm ensures a near-optimal design satisfying the given heat duty and geometric constraints. The authors also provide several sub-algorithms to satisfy imposed velocity limitations. They illustrate how useful these sub-algorithms are with several examples where the exchanger weight is minimized.
Resumo:
Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.