266 resultados para H-1 MAS NMR
Resumo:
The thiocarbohydrazone Schiff-base ligand with a nitrogen and sulphur donor was synthesized through condensation of pyridine-2-carbaldehyde and thiocarbohydrazide. Schiff-base ligands have the ability to conjugate with metal salts. A series of metal complexes with a general formula [MCl(2)(H(2)L)]center dot nH(2)O (M=Ni, Co, Cu and Zn) were synthesized by forming complexes of the N(1),N5-bis[pyridine-2-methylene]thiocarbohydrazone (H2L) Schiff-base ligand. These metal complexes and ligand were characterized by using ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FT-IR), (1)H and (13)C NMR spectroscopy and mass spectroscopy, physicochemical characterization, CHNS and conductivity. The biological activity of the synthesized ligand was investigated by using Escherichia coli DNA as target. The DNA interaction of the synthesized ligand and complexes on E. coli plasmid DNA was investigated in the aqueous medium by UV-Vis spectroscopy and the binding constant (K(b)) was calculated. The DNA binding studies showed that the metal complexes had an improved interaction due to trans-geometrical isomers of the complexes than ligand isomers in cis-positions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
NMR spectra of molecules oriented in liquid-crystalline matrix provide information on the structure and orientation of the molecules. Thermotropic liquid crystals used as an orienting media result in the spectra of spins that are generally strongly coupled. The number of allowed transitions increases rapidly with the increase in the number of interacting spins. Furthermore, the number of single quantum transitions required for analysis is highly redundant. In the present study, we have demonstrated that it is possible to separate the subspectra of a homonuclear dipolar coupled spin system on the basis of the spin states of the coupled heteronuclei by multiple quantum (MQ)−single quantum (SQ) correlation experiments. This significantly reduces the number of redundant transitions, thereby simplifying the analysis of the complex spectrum. The methodology has been demonstrated on the doubly 13C labeled acetonitrile aligned in the liquid-crystal matrix and has been applied to analyze the complex spectrum of an oriented six spin system.
Resumo:
Molecules exhibiting a thermotropic liquid-crystalline property have acquired significant importance due to their sensitivity to external stimuli such as temperature, mechanical forces, and electric and magnetic fields. As a result, several novel mesogens have been synthesized by the introduction of various functional groups in the vicinity of the aromatic core as well as in the side chains and their properties have been studied. In the present study, we report three-ring mesogens with hydroxyl groups at one terminal. These mesogens were synthesized by a multistep route, and structural characterization was accomplished by spectral techniques. The mesophase properties were studied by hot-stage optical polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. An enantiotropic nematic phase was noticed for lower homologues, while an additional smectic C phase was found for higher homologues. Solid-state high-resolution natural abundance (13)C NMR studies of a typical mesogen in the solid phase and in the mesophases have been carried out. The (13)C NMR spectrum of the mesogen in the smectic C and nematic phases indicated spontaneous alignment of the molecule in the magnetic field. By utilizing the two-dimensional separated local field (SLF) NMR experiment known as SAMPI4, (13)C-(1)H dipolar couplings have been obtained, which were utilized to determine the orientational order parameters of the mesogen.
Resumo:
(2)H-{(1)H} 1D and 2D-NMR spectroscopy is used to evaluate the enantiodiscrimination potential of DNA-based, lyotropic chiral mesophases on a series of (pro) chiral amino acids.
Resumo:
NMR spectroscopy has witnessed tremendous advancements in recent years with the development of new methodologies for structure determination and availability of high-field strength spectrometers equipped with cryogenic probes. Supported by these advancements, a new dimension in NMR research has emerged which aims to increase the speed with data is collected and analyzed. Several novel methodologies have been proposed in this direction. This review focuses on the principles on which these different approaches are based with an emphasis on G-matrix Fourier transform NMR spectroscopy.
Resumo:
The liquid crystalline phase represents a unique state of matter where partial order exists on molecular and supra-molecular levels and is responsible for several interesting properties observed in this phase. Hence a detailed study of ordering in liquid crystals is of significant scientific and technological interest. NMR provides several parameters that can be used to obtain information about the liquid crystalline phase. Of these, the measurement of dipolar couplings between nuclei has proved to be a convenient way of obtaining liquid crystalline ordering since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal.However, measurement of the dipolar coupling between a pair of selected nuclei is beset with problems that require special solutions. In this article the use of cross polarization for measuring dipolar couplings in liquid crystals is illustrated. Transient oscillations observed during cross polarization provide the dipolar couplings between essentially isolated nearest neighbor spins which can be extracted for several sites simultaneously by employing two-dimensional NMR techniques. The use of the method for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment are considered and their utility illustrated. A method for obtaining proton–proton dipolar couplings, by utilizing cross polarization from the dipolar reservoir, is presented. Some applications are also highlighted.
Resumo:
The novel three-component chiral derivatization protocols have been derived for (1)H and (19)F NMR spectroscopic discrimination of a series of chiral hydroxy acids by their coordination and self-assembly with optically active a-methylbenzylamine and 2-formylphenylboronic acid. In addition, the optically pure (S)-mandelic acid in combination with 2-formylphenylboronic acid permits visualization of enantiomers of primary amines. These protocols have been demonstrated on enantiodiscrimination of chiral amines and hydroxy acids.
Resumo:
A series of novel 2-(4-(2,4-dimethoxybenzoyl)phenoxy)-1-(4-(3-(piperidin-4-yl)propyl) piperidin-1-yl)ethanone derivatives 9(ae) and 10(ag) were synthesized and characterized by 1H NMR, IR, mass spectral, and elemental analysis. These novel compounds were evaluated for their antileukemic activity against two human leukemic cell lines (K562 and CEM) by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. Some of the tested compounds showed good antiproliferative activity with IC50 values ranging from 1.6 to 8.0 mu m. Compound 9c, 9e, and 10f with an electron-withdrawing halogen substituent at the para position on the phenyl ring showed excellent in vitro potency against tested human leukemia cells (K562 and CEM).
Resumo:
Obestatin is a more recently discovered hormone that is encoded by the ghrelin gene and produced in the stomach and gut. We report NMR analysis on synthetic Obestatin (OB23), a 23 residue peptide, along with three overlapping fragments of the same in methanol solvent as a first step towards structure activity relationship. Selective substitutions on the promising N-terminal and middle fragments of obestatin have been carried out in order to improve the efficacy and potency. In the N-terminal fragment two peptides were obtained by the replacement of Gly (8) with a-aminoisobutyric acid (Aib, U) and Phe (F5) with Cyclohexylalanine (Cha). In case of the middle fragment both Gly (3) and Gly (8) were replaced with Aib residues. The rationale being, these unusual amino acids could provide protection from immediate degradation and aid structure stabilization. Our previous studies showed that the N-terminal and the middle fragment were unstructured and hence this substitution would directly evaluate the effect of structure on the activity of these fragment analogs. Detailed NMR analysis clearly demonstrates formation of helical secondary structure in all the peptide analogues and provides justification for relative activities reported by our group previously (Nagaraj et al. 2009).
Resumo:
The present study reports a two dimensional NMR experiment which separates single quantum spectra of enantiomers from that of a racemic mixture. This is a blend of selective double quantum refocusing, for resolving couplings and chemical shift interactions along two dimensions followed by correlation of the selectively excited protons to the entire coupled spin network. The concept is solely based on the presence of distinct intra methyl dipolar couplings of different enantiomers when dissolved in chiral orienting media. The analysis of single enantiomer spectrum obtained from respective F-2 cross sections yield all the spectral information. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We propose an iterative algorithm to simulate the dynamics generated by any n-qubit Hamiltonian. The simulation entails decomposing the unitary time evolution operator U (unitary) into a product of different time-step unitaries. The algorithm product-decomposes U in a chosen operator basis by identifying a certain symmetry of U that is intimately related to the number of gates in the decomposition. We illustrate the algorithm by first obtaining a polynomial decomposition in the Pauli basis of the n-qubit quantum state transfer unitary by Di Franco et al. [Phys. Rev. Lett. 101, 230502 (2008)] that transports quantum information from one end of a spin chain to the other, and then implement it in nuclear magnetic resonance to demonstrate that the decomposition is experimentally viable. We further experimentally test the resilience of the state transfer to static errors in the coupling parameters of the simulated Hamiltonian. This is done by decomposing and simulating the corresponding imperfect unitaries.
Resumo:
The direct evidence for the existence of intra-molecular C-F center dot center dot center dot H-N hydrogen bond in organofluorine molecules, in the liquid state, is derived using NMR spectroscopy by the detection of long range interactions among fluorine, nitrogen and hydrogen atoms. The present study reports the determination of the relative signs and magnitudes of through space and through bond couplings to draw unambiguous evidence on the existence of weak molecular interactions involving organic fluorine. It is a simple, easy to implement, N-15 natural abundant two dimensional heteronuclear N-15-H-1 double quantum-single quantum correlation experiment. The existence of intra-molecular hydrogen bond is conclusively established in the investigated molecules. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this Letter, we examine magnetization in double- and zero-quantum reservoirs of an ensemble of spin-1/2 nuclei and describe their role in determining the sensitivity of a class of separated local field NMR experiments based on Hartmann-Hahn cross-polarization. We observe that for the liquid crystal system studied, a large dilute spin-polarization, obtained initially by the use of adiabatic cross-polarization, can enhance the sensitivity of the above experiment. The signal enhancement factors, however, are found to vary and depend on the local dynamics. The experimental results have been utilized to obtain the local order-parameters of the system. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Benzene carboxylic acids and Benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by H-1, C-13 and N-15 NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A series of 1,4-disubstituted 1,2,3-bistriazoles was synthesized via click chemistry by cycloaddition of various bisalkynes with benzyl/2-phenylethyl azide. Synthesized triazoles were characterized by IR, H-1 NMR, C-13 NMR and mass spectral techniques. All the compounds were evaluated for antibacterial/antifungal activities and found to possess moderate to good antimicrobial activities. Further the docking study for the most active compound against DNA Gyrase was also carried out. (C) 2012 Elsevier Ltd. All rights reserved.