268 resultados para Generalized Weyl Fractional q-Integral Operator
Resumo:
This paper reports on our study of the edge of the 2/5 fractional quantum Hall state, which is more complicated than the edge of the 1/3 state because of the presence of edge sectors corresponding to different partitions of composite fermions in the lowest two Lambda levels. The addition of an electron at the edge is a nonperturbative process and it is not a priori obvious in what manner the added electron distributes itself over these sectors. We show, from a microscopic calculation, that when an electron is added at the edge of the ground state in the [N(1), N(2)] sector, where N(1) and N(2) are the numbers of composite fermions in the lowest two Lambda levels, the resulting state lies in either [N(1) + 1, N(2)] or [N(1), N(2) + 1] sectors; adding an electron at the edge is thus equivalent to adding a composite fermion at the edge. The coupling to other sectors of the form [N(1) + 1 + k, N(2) - k], k integer, is negligible in the asymptotically low-energy limit. This study also allows a detailed comparison with the two-boson model of the 2/5 edge. We compute the spectral weights and find that while the individual spectral weights are complicated and nonuniversal, their sum is consistent with an effective two-boson description of the 2/5 edge.
Resumo:
A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this paper is to propose a numerically integrated modified virtual crack closure integral (NI-MVCCI) technique for fracture analysis of cracked plate panels. NI-MVCCI technique is generalized one and the expressions for computing the strain energy release rate (SERR) are independent of the finite element employed. NI-MVCCI technique has been demonstrated for 4-noded, 8-noded (regular and quarter-point) and 9-noded isoparametric finite elements. Numerical studies on fracture analysis of 2-D crack (mode-I and mode-II) problems have been conducted employing these elements. SERR and stress intensity factors (SIF) have been computed for these problems and found to be in good agreement with the respective analytical solutions available in the literature. The appropriate Gauss numerical integration order to be employed for each of these elements for accurate computation of SERR and SIF has been recommended based on the studies.
Resumo:
Examination of experimental data of the modelled rockfill materials using parallel gradation technique has revealed that the plots of logarithm of strain at failure against logarithm of confining pressure are linear. Also, a trend of increase in failure strain with increase in confining pressure and maximum size of the particle have been observed. The approach presented in this paper highlights the prediction of volume change properties of rockfill materials over a range of confining pressures and particle sizes based on the results of only two tests carried out at two different confining pressures for a maximum particle size of modelled material with the use of parallel gradation technique. Two test approach and its application in modelling of rockfill materials to estimate its volume change behaviour is illustrated by means of a selected experimental data available in the literature.
Resumo:
Discovering patterns in temporal data is an important task in Data Mining. A successful method for this was proposed by Mannila et al. [1] in 1997. In their framework, mining for temporal patterns in a database of sequences of events is done by discovering the so called frequent episodes. These episodes characterize interesting collections of events occurring relatively close to each other in some partial order. However, in this framework(and in many others for finding patterns in event sequences), the ordering of events in an event sequence is the only allowed temporal information. But there are many applications where the events are not instantaneous; they have time durations. Interesting episodesthat we want to discover may need to contain information regarding event durations etc. In this paper we extend Mannila et al.’s framework to tackle such issues. In our generalized formulation, episodes are defined so that much more temporal information about events can be incorporated into the structure of an episode. This significantly enhances the expressive capability of the rules that can be discovered in the frequent episode framework. We also present algorithms for discovering such generalized frequent episodes.
Resumo:
Considering voltage stability as a static viability problem, this paper takes a particular concern of Q-V characteristics and reflects on certain notions that do not seem to have been explicitly mentioned or derived in the existing documented literature. The equations of Q-V characteristics are rederived in exactness, some salient points on the curve are discovered and analysed. The results of the analysis are illustrated through a case study
Resumo:
For a contraction P and a bounded commutant S of P. we seek a solution X of the operator equation S - S*P = (1 - P* P)(1/2) X (1 - P* P)(1/2) where X is a bounded operator on (Ran) over bar (1 - P* P)(1/2) with numerical radius of X being not greater than 1. A pair of bounded operators (S, P) which has the domain Gamma = {(z(1) + z(2), z(2)): vertical bar z(1)vertical bar < 1, vertical bar z(2)vertical bar <= 1} subset of C-2 as a spectral set, is called a P-contraction in the literature. We show the existence and uniqueness of solution to the operator equation above for a Gamma-contraction (S, P). This allows us to construct an explicit Gamma-isometric dilation of a Gamma-contraction (S, P). We prove the other way too, i.e., for a commuting pair (S, P) with parallel to P parallel to <= 1 and the spectral radius of S being not greater than 2, the existence of a solution to the above equation implies that (S, P) is a Gamma-contraction. We show that for a pure F-contraction (S, P), there is a bounded operator C with numerical radius not greater than 1, such that S = C + C* P. Any Gamma-isometry can be written in this form where P now is an isometry commuting with C and C. Any Gamma-unitary is of this form as well with P and C being commuting unitaries. Examples of Gamma-contractions on reproducing kernel Hilbert spaces and their Gamma-isometric dilations are discussed. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution.
Resumo:
An all-digital technique is proposed for generating an accurate delay irrespective of the inaccuracies of a controllable delay line. A subsampling technique-based delay measurement unit (DMU) capable of measuring delays accurately for the full period range is used as the feedback element to build accurate fractional period delays based on input digital control bits. The proposed delay generation system periodically measures and corrects the error and maintains it at the minimum value without requiring any special calibration phase. Up to 40x improvement in accuracy is demonstrated for a commercial programmable delay generator chip. The time-precision trade-off feature of the DMU is utilized to reduce the locking time. Loop dynamics are adjusted to stabilize the delay after the minimum error is achieved, thus avoiding additional jitter. Measurement results from a high-end oscilloscope also validate the effectiveness of the proposed system in improving accuracy.
Resumo:
We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.
Resumo:
Coenzyme Q (ubiquinone), a fully substituted benzoquinone with polyprenyl side chain, participates in many cellular redox activities. Paradoxically it was discovered only in 1957, albeit being ubiquitous. It required a person, F. L. Crane, a place, Enzyme Institute, Madison, USA, and a time when D. E. Green was directing vigorous research on mitochondria. Located at the transition of 2-electron flavoproteins and 1-electron cytochrome carriers, it facilitates electron transfer through the elegant Q-cycle in mitochondria to reduce O-2 to H2O, and to H2O2, now a significant signal-transducing agent, as a minor activity in shunt pathway (animals) and alternative oxidase (plants). The ability to form Q-radical by losing an electron and a proton was ingeniously used by Mitchell to explain the formation of the proton gradient, considered the core of energy transduction, and also in acidification in vacuoles. Known to be a mobile membrane constituent (microsomes, plasma membrane and Golgi apparatus), allowing it to reach multiple sites, coenzyme Q is expected to have other activities. Coenzyme Q protects circulating lipoproteins being a better lipid antioxidant than even vitamin E. Binding to proteins such as QPS, QPN, QPC and uncoupling protein in mitochondria, QA and QB in the reaction centre in R. sphaeroides, and disulfide bond-forming protein in E. coli (possibly also in Golgi), coenzyme Q acquires selective functions. A characteristic of orally dosed coenzyme Q is its exclusive absorption into the liver, but not the other tissues. This enrichment of Q is accompanied by significant decrease of blood pressure and of serum cholesterol. Inhibition of formation of mevalonate, the common precursor in the branched isoprene pathway, by the minor product, coenzyme Q, decreases the major product, cholesterol. Relaxation of contracted arterial smooth muscle by a side-chain truncated product of coenzyme Q explains its effect of decreasing blood pressure. Extensive clinical studies carried out on oral supplements of coenzyine Q, initially by K. Folkers and Y. Yamamura and followed many others, revealed a large number of beneficial effects, significantly in cardiovascular diseases. Such a variety of effects by this lipid quinone cannot depend on redox activity alone. The fat-soluble vitamins (A, D, E and K) that bear structural relationship with coenzyme Q are known to be active in their polar forms. A vignette of modified forms of coenzyme Q taking active role in its multiple effects is emerging.
Resumo:
An automated geo-hazard warning system is the need of the hour. It is integration of automation in hazard evaluation and warning communication. The primary objective of this paper is to explain a geo-hazard warning system based on Internet-resident concept and available cellular mobile infrastructure that makes use of geo-spatial data. The functionality of the system is modular in architecture having input, understanding, expert, output and warning modules. Thus, the system provides flexibility in integration between different types of hazard evaluation and communication systems leading to a generalized hazard warning system. The developed system has been validated for landslide hazard in Indian conditions. It has been realized through utilization of landslide causative factors, rainfall forecast from NASA's TRMM (Tropical Rainfall Measuring Mission) and knowledge base of landslide hazard intensity map and invokes the warning as warranted. The system evaluated hazard commensurate with expert evaluation within 5-6 % variability, and the warning message permeability has been found to be virtually instantaneous, with a maximum time lag recorded as 50 s, minimum of 10 s. So it could be concluded that a novel and stand-alone system for dynamic hazard warning has been developed and implemented. Such a handy system could be very useful in a densely populated country where people are unaware of the impending hazard.
Resumo:
A generalized top-spin analysis proposed some time ago in the context of the standard model and subsequently studied in varying contexts is now applied primarily to the case of e(+)e(-) -> t (tww) over bar with transversely polarized beams. This extends our recent work with new physics couplings of scalar (S) and tensor (T) types. We carry out a comprehensive analysis assuming only the electron beam to be transversely polarized, which is sufficient to probe these interactions, and also eliminates any azimuthal angular dependence due to the standard model or new physics of the vector (V) and axial-vector (A) type interactions. We then consider new physics of the general four-Fermi type of V and A type with both beams transversely polarized and discuss implications with longitudinal polarization as well. The generalized spin bases are all investigated in the presence of either longitudinal or transverse beam polarization to look for appreciable deviation from the SM prediction in case of the new physics. 90% confidence level limits are obtained on the interactions for the generalized spin bases with realistic integrated luminosity. In order to achieve this we present a general discussion based on helicity amplitudes and derive a general transformation matrix that enables us to treat the spin basis. We find that beamline basis combined with transverse polarization provides an excellent window of opportunity both for S, T and V, A new physics, followed by the off-diagonal basis. The helicity basis is shown to be the best in case of longitudinal polarization to look for new physics effects due to V and A. DOI: 10.1103/PhysRevD.86.114019
Resumo:
The q-Gaussian distribution results from maximizing certain generalizations of Shannon entropy under some constraints. The importance of q-Gaussian distributions stems from the fact that they exhibit power-law behavior, and also generalize Gaussian distributions. In this paper, we propose a Smoothed Functional (SF) scheme for gradient estimation using q-Gaussian distribution, and also propose an algorithm for optimization based on the above scheme. Convergence results of the algorithm are presented. Performance of the proposed algorithm is shown by simulation results on a queuing model.
Resumo:
In this article, we investigate the performance of a volume integral equation code on BlueGene/L system. Volume integral equation (VIE) is solved for homogeneous and inhomogeneous dielectric objects for radar cross section (RCS) calculation in a highly parallel environment. Pulse basis functions and point matching technique is used to convert the volume integral equation into a set of simultaneous linear equations and is solved using parallel numerical library ScaLAPACK on IBM's distributed-memory supercomputer BlueGene/L by different number of processors to compare the speed-up and test the scalability of the code.