301 resultados para Gaussian
Resumo:
Land cover (LC) and land use (LU) dynamics induced by human and natural processes play a major role in global as well as regional patterns of landscapes influencing biodiversity, hydrology, ecology and climate. Changes in LC features resulting in forest fragmentations have posed direct threats to biodiversity, endangering the sustainability of ecological goods and services. Habitat fragmentation is of added concern as the residual spatial patterns mitigate or exacerbate edge effects. LU dynamics are obtained by classifying temporal remotely sensed satellite imagery of different spatial and spectral resolutions. This paper reviews five different image classification algorithms using spatio-temporal data of a temperate watershed in Himachal Pradesh, India. Gaussian Maximum Likelihood classifier was found to be apt for analysing spatial pattern at regional scale based on accuracy assessment through error matrix and ROC (receiver operating characteristic) curves. The LU information thus derived was then used to assess spatial changes from temporal data using principal component analysis and correspondence analysis based image differencing. The forest area dynamics was further studied by analysing the different types of fragmentation through forest fragmentation models. The computed forest fragmentation and landscape metrics show a decline of interior intact forests with a substantial increase in patch forest during 1972-2007.
Resumo:
The data obtained in the earlier parts of this series for the donor and acceptor end parameters of N-H. O and O-H. O hydrogen bonds have been utilised to obtain a qualitative working criterion to classify the hydrogen bonds into three categories: “very good” (VG), “moderately good” (MG) and weak (W). The general distribution curves for all the four parameters are found to be nearly of the Gaussian type. Assuming that the VG hydrogen bonds lie between 0 and ± la, MG hydrogen bonds between ± 1s̀ and ± 2s̀, W hydrogen bonds beyond ± 2s̀ (where s̀ is the standard deviation), suitable cut-off limits for classifying the hydrogen bonds in the three categories have been derived. These limits are used to get VG and MG ranges for the four parameters 1 and θ (at the donor end) and ± and ± (at the acceptor end). The qualitative strength of a hydrogen bond is decided by the cumulative application of the criteria to all the four parameters. The criterion has been further applied to some practical examples in conformational studies such as α-helix and can be used for obtaining suitable location of hydrogen atoms to form good hydrogen bonds. An empirical approach to the energy of hydrogen bonds in the three categories has also been presented.
Resumo:
This paper is concerned with the optimal flow control of an ATM switching element in a broadband-integrated services digital network. We model the switching element as a stochastic fluid flow system with a finite buffer, a constant output rate server, and a Gaussian process to characterize the input, which is a heterogeneous set of traffic sources. The fluid level should be maintained between two levels namely b1 and b2 with b1
Resumo:
The electrical transport behavior of n-n indium nitride nanodot-silicon (InN ND-Si) heterostructure Schottky diodes is reported here, which have been fabricated by plasma-assisted molecular beam epitaxy. InN ND structures were grown on a 20 nm InN buffer layer on Si substrates. These dots were found to be single crystalline and grown along [0 0 0 1] direction. Temperature-dependent current density-voltage plots (J-V-T) reveal that the ideality factor (eta) and Schottky barrier height (SBH) (Phi(B)) are temperature dependent. The incorrect values of the Richardson constant (A**) produced suggest an inhomogeneous barrier. Descriptions of the experimental results were explained by using two models. First one is barrier height inhomogeneities (BHIs) model, in which considering an effective area of the inhomogeneous contact provided a procedure for a correct determination of A**. The Richardson constant is extracted similar to 110 A cm(-2) K(-2) using the BHI model and that is in very good agreement with the theoretical value of 112 A cm(-2) K(-2). The second model uses Gaussian statistics and by this, mean barrier height Phi(0) and A** were found to be 0.69 eV and 113 A cm(-2) K(-2), respectively.
Resumo:
A variable resolution global spectral method is created on the sphere using High resolution Tropical Belt Transformation (HTBT). HTBT belongs to a class of map called reparametrisation maps. HTBT parametrisation of the sphere generates a clustering of points in the entire tropical belt; the density of the grid point distribution decreases smoothly in the domain outside the tropics. This variable resolution method creates finer resolution in the tropics and coarser resolution at the poles. The use of FFT procedure and Gaussian quadrature for the spectral computations retains the numerical efficiency available with the standard global spectral method. Accuracy of the method for meteorological computations are demonstrated by solving Helmholtz equation and non-divergent barotropic vorticity equation on the sphere. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This paper presents the design and performance analysis of a detector based on suprathreshold stochastic resonance (SSR) for the detection of deterministic signals in heavy-tailed non-Gaussian noise. The detector consists of a matched filter preceded by an SSR system which acts as a preprocessor. The SSR system is composed of an array of 2-level quantizers with independent and identically distributed (i.i.d) noise added to the input of each quantizer. The standard deviation sigma of quantizer noise is chosen to maximize the detection probability for a given false alarm probability. In the case of a weak signal, the optimum sigma also minimizes the mean-square difference between the output of the quantizer array and the output of the nonlinear transformation of the locally optimum detector. The optimum sigma depends only on the probability density functions (pdfs) of input noise and quantizer noise for weak signals, and also on the signal amplitude and the false alarm probability for non-weak signals. Improvement in detector performance stems primarily from quantization and to a lesser extent from the optimization of quantizer noise. For most input noise pdfs, the performance of the SSR detector is very close to that of the optimum detector. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution.
Resumo:
We report gas phase mid-infrared spectra of 1- and 2- methyl naphthalenes at 0.2 cm(-1) resolution. Assignment of observed bands have been made using scaled quantum mechanical (SQM) calculations where the force fields rather the frequencies are scaled to find a close fit between observed and calculated bands. The structure of the molecules has been optimized using B3LYP level of theory in conjunction with standard 6-311G** basis set to obtain the harmonic frequencies. Using the force constants in Cartesian coordinates from the Gaussian output, scaled force field calculations are carried out using a modified version of the UMAT program in the QCPE package. Potential energy distributions of the normal modes obtained from such calculations helped us assign the observed bands and identify the unique features of the spectra of 1- and 2-MNs which are important for their isomeric identification.
Resumo:
We have investigated the Raman spectra of different regioisomeric forms of monoacyl and diacyl chlorogenic acids. Raman spectra of 3-caffeoylquinic acid, 4-caffeoylquinic acid, 5-caffeoylquinic, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, and a synthetic derivative of 3-feruloylqunic acid were recorded using visible Raman spectroscopic technique and vibrational bands are assigned. Additionally, a theoretical study of 5-caffeoylquinic acid was performed using Gaussian 03. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Infrared spectra of atmospherically and astronomically important dimethylphenanthrenes (DMPs), namely 1,9-DMP, 2,4-DMP, and 3,9-DMP, were recorded in the gas phase from 400 to 4000 cm(-1) with a resolution of 0.5 cm(-1) at 110 degrees C using a 7.2 m gas cell. DFT calculations at the B3LYP/6-311G** level were carried out to get the harmonic and anharmonic frequencies and their corresponding intensities for the assignment of the observed bands. However, spectral assignments could not be made unambiguously using anharmonic or selectively scaled harmonic frequencies. Therefore, the scaled quantum mechanical (SQM) force field analysis method was adopted to achieve more accurate assignments. In this method force fields instead of frequencies were scaled. The Cartesian force field matrix obtained from the Gaussian calculations was converted to a nonredundant local coordinate force field matrix and then the force fields were scaled to match experimental frequencies in a consistent manner using a modified version of the UMAT program of the QCPE package. Potential energy distributions (PEDs) of the normal modes in terms of nonredundant local coordinates obtained from these calculations helped us derive the nature of the vibration at each frequency. The intensity of observed bands in the experimental spectra was calculated using estimated vapor pressures of the DMPs. An error analysis of the mean deviation between experimental and calculated intensities reveal that the observed methyl C-H stretching intensity deviates more compared to the aromatic C-H and non C-H stretching bands.
Resumo:
ZnO/Si heterojunctions were fabricated by growing ZnO thin films on p-type Si (100) substrate by pulsed laser deposition without buffer layers. The crystallinity of the heterojunction was analyzed by high resolution X-ray diffraction and atomic force microscopy. The optical quality of the film was analyzed by room temperature (RT) photoluminescence measurements. The high intense band to band emission confirmed the high quality of the ZnO thin films on Si. The electrical properties of the junction were studied by temperature dependent current-voltage measurements and RT capacitance-voltage (C-V) analysis. The charge carrier concentration and the barrier height (BH) were calculated, to be 5.6x10(19) cm(-3) and 0.6 eV respectively from the C-V plot. The BH and ideality factor, calculated using the thermionic emission (TE) model, were found to be highly temperature dependent. We observed a much lower value in Richardson constant, 5.19x10(-7)A/cm(2) K-2 than the theoretical value (32 A/cm(2) K-2) for ZnO. This analysis revealed the existence of a Gaussian distribution (GD) with a standard deviation of sigma(2)=0.035 V. By implementing the GD to the TE, the values of BH and Richardson constant were obtained as 1.3 eV and 39.97 A/cm(2) K-2 respectively from the modified Richardson plot. The obtained Richardson constant value is close to the theoretical value for n-ZnO. These high quality heterojunctions can be used for solar cell applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Chemical reactions inside cells are typically subject to the effects both of the cell's confining surfaces and of the viscoelastic behavior of its contents. In this paper, we show how the outcome of one particular reaction of relevance to cellular biochemistry - the diffusion-limited cyclization of long chain polymers - is influenced by such confinement and crowding effects. More specifically, starting from the Rouse model of polymer dynamics, and invoking the Wilemski-Fixman approximation, we determine the scaling relationship between the mean closure time t(c) of a flexible chain (no excluded volume or hydrodynamic interactions) and the length N of its contour under the following separate conditions: (a) confinement of the chain to a sphere of radius d and (b) modulation of its dynamics by colored Gaussian noise. Among other results, we find that in case (a) when d is much smaller than the size of the chain, t(c) similar to Nd-2, and that in case (b), t(c) similar to N-2/(2 (2H)), H being a number between 1/2 and 1 that characterizes the decay of the noise correlations. H is not known a priori, but values of about 0.7 have been used in the successful characterization of protein conformational dynamics. At this value of H (selected for purposes of illustration), t(c) similar to N-3.4, the high scaling exponent reflecting the slow relaxation of the chain in a viscoelastic medium. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729041]
Resumo:
The temperature dependent current transport properties of nonpolar a-plane (11 2 0) InN/GaN heterostructure Schottky junction were investigated. The barrier height ( b) and ideally factor (η) estimated from the thermionic emission (TE) model were found to be temperature dependent in nature. The conventional Richardson plot of the ln(I s/T 2) versus 1/kT has two regions: the first region (150-300 K) and the second region (350-500 K). The values of Richardson constant (A +) obtained from this plot are found to be lower than the theoretical value of n-type GaN. The variation in the barrier heights was explained by a double Gaussian distribution with mean barrier height values ( b ) of 1.17 and 0.69 eV with standard deviation (� s) of 0.17 and 0.098 V, respectively. The modified Richardson plot in the temperature range 350-500 K gives the Richardson constant which is close to the theoretical value of n-type GaN. Hence, the current mechanism is explained by TE by assuming the Gaussian distribution of barrier height. At low temperature 150-300 K, the absence of temperature dependent tunneling parameters indicates the tunneling assisted current transport mechanism. © 2012 American Institute of Physics.
Resumo:
In this report, the currentvoltage (IV) characteristics of Au/GaN Schottky diodes have been carried out in the temperature range of 300510?K. The estimated values of the Schottky-barrier height (SBH) and the ideality factor of the diodes based on the thermionic emission (TE) mechanism were found to be temperature dependent. The barrier height was found to increase and the ideality factor to decrease with increasing temperature. The conventional Richardson plot of ln(Is/T2) versus 1/kT gives the SBH of 0.51?eV and Richardson constant value of 3.23?X?10-5?A?cm-2?K-2 which is much lower than the known value of 26.4?A?cm-2?K-2 for GaN. Such discrepancies of the SBH and Richardson constant value were attributed to the existence of barrier-height inhomogeneities at the Au/GaN interface. The modified Richardson plot of ln(Is/T2)q2 sigma 2/2k2T2 versus q/kT, by assuming a Gaussian distribution of barrier heights at the Au/GaN interface, provided the SBH of 1.47?eV and Richardson constant value of 38.8?A?cm-2?K-2. The temperature dependence of the barrier height is interpreted on the basis of existence of the Gaussian distribution of the barrier heights due to the barrier-height inhomogeneities at the Au/GaN interface.
Resumo:
From the analysis of experimentally observed variations in surface strains with loading in reinforced concrete beams, it is noted that there is a need to consider the evolution of strains (with loading) as a stochastic process. Use of Markov Chains for modeling stochastic evolution of strains with loading in reinforced concrete flexural beams is studied in this paper. A simple, yet practically useful, bi-level homogeneous Gaussian Markov Chain (BLHGMC) model is proposed for determining the state of strain in reinforced concrete beams. The BLHGMC model will be useful for predicting behavior/response of reinforced concrete beams leading to more rational design.