360 resultados para Fast Algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a method to encode a 3D magnetic resonance image data and a decoder in such way that fast access to any 2D image is possible by decoding only the corresponding information from each subband image and thus provides minimum decoding time. This will be of immense use for medical community, because most of the PET and MRI data are volumetric data. Preprocessing is carried out at every level before wavelet transformation, to enable easier identification of coefficients from each subband image. Inclusion of special characters in the bit stream facilitates access to corresponding information from the encoded data. Results are taken by performing Daub4 along x (row), y (column) direction and Haar along z (slice) direction. Comparable results are achieved with the existing technique. In addition to that decoding time is reduced by 1.98 times. Arithmetic coding is used to encode corresponding information independently

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion Estimation is one of the most power hungry operations in video coding. While optimal search (eg. full search)methods give best quality, non optimal methods are often used in order to reduce cost and power. Various algorithms have been used in practice that trade off quality vs. complexity. Global elimination is an algorithm based on pixel averaging to reduce complexity of motion search while keeping performance close to that of full search. We propose an adaptive version of the global elimination algorithm that extracts individual macro-block features using Hadamard transform to optimize the search. Performance achieved is close to the full search method and global elimination. Operational complexity and hence power is reduced by 30% to 45% compared to global elimination method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bluetooth is a short-range radio technology operating in the unlicensed industrial-scientific-medical (ISM) band at 2.45 GHz. A scatternet is established by linking several piconets together in ad hoc fashion to yield a global wireless ad hoc network. This paper proposes a polling policy that aims to achieve increased system throughput and reduced packet delays while providing reasonably good fairness among all traffic flows in a Bluetooth Scatternet. Experimental results from our proposed algorithm show performance improvements over a well known existing algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of engineered landfills for the disposal of industrial wastes is currently a common practice. Bentonite is attracting a greater attention not only as capping and lining materials in landfills but also as buffer and backfill materials for repositories of high-level nuclear waste around the world. In the design of buffer and backfill materials, it is important to know the swelling pressures of compacted bentonite with different electrolyte solutions. The theoretical studies on swell pressure behaviour are all based on Diffuse Double Layer (DDL) theory. To establish a relation between the swell pressure and void ratio of the soil, it is necessary to calculate the mid-plane potential in the diffuse part of the interacting ionic double layers. The difficulty in these calculations is the elliptic integral involved in the relation between half space distance and mid plane potential. Several investigators circumvented this problem using indirect methods or by using cumbersome numerical techniques. In this work, a novel approach is proposed for theoretical estimations of swell pressures of fine-grained soil from the DDL theory. The proposed approach circumvents the complex computations in establishing the relationship between mid-plane potential and diffused plates’ distances in other words, between swell pressure and void ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4ÃÂ4 discrete cosine transform is one of the most important building blocks for the emerging video coding standard, viz. H.264. The conventional implementation does some approximation to the transform matrix elements to facilitate integer arithmetic, for which hardware is suitably prepared. Though the transform coding does not involve any multiplications, quantization process requires sixteen 16-bit multiplications. The algorithm used here eliminates the process of approximation in transform coding and multiplication in the quantization process, by usage of algebraic integer coding. We propose an area-efficient implementation of the transform and quantization blocks based on the algebraic integer coding. The designs were synthesized with 90 nm TSMC CMOS technology and were also implemented on a Xilinx FPGA. The gate counts and throughput achievable in this case are 7000 and 125 Msamples/sec.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Universal Mobile Telecommunication Systems (UMTS), the Downlink Shared Channel (DSCH) can be used for providing streaming services. The traffic model for streaming services is different from the commonly used continuously- backlogged model. Each connection specifies a required service rate over an interval of time, k, called the "control horizon". In this paper, our objective is to determine how k DSCH frames should be shared among a set of I connections. We need a scheduler that is efficient and fair and introduce the notion of discrepancy to balance the conflicting requirements of aggregate throughput and fairness. Our motive is to schedule the mobiles in such a way that the schedule minimizes the discrepancy over the k frames. We propose an optimal and computationally efficient algorithm, called STEM+. The proof of the optimality of STEM+, when applied to the UMTS rate sets is the major contribution of this paper. We also show that STEM+ performs better in terms of both fairness and aggregate throughput compared to other scheduling algorithms. Thus, STEM+ achieves both fairness and efficiency and is therefore an appealing algorithm for scheduling streaming connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem – the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node.In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels,where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information(CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a corresponding factored class of control policies corresponding to local cooperation between nodes with a local outage constraint. The resulting optimal scheme in this class can again be computed efficiently in a decentralized manner. We demonstrate significant energy savings for both slow and fast fading channels through numerical simulations of randomly distributed networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates in-line spring-mass systems (An), fixed at one end and free at the other, with n-degrees of freedom (d.f.). The objective is to find feasible in-line systems (B(n)) that are isospectral to a given system. The spring-mass systems, A(n) and B(n), are represented by Jacobi matrices. An error function is developed with the help of the Jacobi matrices A(n) and B(n). The problem of finding the isospectral systems is posed as an optimization problem with the aim of minimizing the error function. The approach for creating isospectral systems uses the fact that the trace of two isospectral Jacobi matrices A(n) and B(n) should be identical. A modification is made to the diagonal elements of the given Jacobi matrix (A(n)), to create the isospectral systems. The optimization problem is solved using the firefly algorithm augmented by a local search procedure. Numerical results are obtained and resulting isospectral systems are shown for 4 d.f. and 10 d.f. systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A "plan diagram" is a pictorial enumeration of the execution plan choices of a database query optimizer over the relational selectivity space. We have shown recently that, for industrial-strength database engines, these diagrams are often remarkably complex and dense, with a large number of plans covering the space. However, they can often be reduced to much simpler pictures, featuring significantly fewer plans, without materially affecting the query processing quality. Plan reduction has useful implications for the design and usage of query optimizers, including quantifying redundancy in the plan search space, enhancing useability of parametric query optimization, identifying error-resistant and least-expected-cost plans, and minimizing the overheads of multi-plan approaches. We investigate here the plan reduction issue from theoretical, statistical and empirical perspectives. Our analysis shows that optimal plan reduction, w.r.t. minimizing the number of plans, is an NP-hard problem in general, and remains so even for a storage-constrained variant. We then present a greedy reduction algorithm with tight and optimal performance guarantees, whose complexity scales linearly with the number of plans in the diagram for a given resolution. Next, we devise fast estimators for locating the best tradeoff between the reduction in plan cardinality and the impact on query processing quality. Finally, extensive experimentation with a suite of multi-dimensional TPCH-based query templates on industrial-strength optimizers demonstrates that complex plan diagrams easily reduce to "anorexic" (small absolute number of plans) levels incurring only marginal increases in the estimated query processing costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a randomized algorithm for large scale SVM learning which solves the problem by iterating over random subsets of the data. Crucial to the algorithm for scalability is the size of the subsets chosen. In the context of text classification we show that, by using ideas from random projections, a sample size of O(log n) can be used to obtain a solution which is close to the optimal with a high probability. Experiments done on synthetic and real life data sets demonstrate that the algorithm scales up SVM learners, without loss in accuracy. 1