201 resultados para Electromagnetic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline Mn0.4Zn0.6SmxGdyFe2-(x+y)O4 (x = y = 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by combustion route. The detailed structural studies were carried out through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM). The results confirms the formation of mixed spine phase with cubic structure due to the distortion created with co-dopants substitution at Fe site in Mn-Zn ferrite lattice. Further, the crystallite size increases with an increase of Sm3+-Gd3+ ions concentration while lattice parameter and lattice strain decreases. Furthermore, the effect of Sm-Gd co-doping in Mn-Zn ferrite on the room temperature electrical (dielectric studies) studies were carried out in the wide frequency range 1 GHz-5 GHz. The magnetic studies were carried out using vibrating sample magnetometer (VSM) under applied magnetic field of 1.5T and also room temperature electron paramagnetic resonance (EPR) spectra's were recorded. From the results of dielectric studies, it shows that the real and imaginary part of permittivities are increasing with variation of Gd3+ and Sm3+ concentration. The magnetic studies reveal the decrease of remnant, saturation magnetization and coercivity with increasing of Sm3+-Gd3+ ion concentration. The g-value, peak-to-peak line width and spin concentration evaluated from EPR spectra correlated with cations occupancy. The electromagnetic properties clearly indicate that these materials are the good candidates which are useful at L and C band frequency. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional (3-D) full-wave electromagnetic simulation using method of moments (MoM) under the framework of fast solver algorithms like fast multipole method (FMM) is often bottlenecked by the speed of convergence of the Krylov-subspace-based iterative process. This is primarily because the electric field integral equation (EFIE) matrix, even with cutting-edge preconditioning techniques, often exhibits bad spectral properties arising from frequency or geometry-based ill-conditioning, which render iterative solvers slow to converge or stagnate occasionally. In this communication, a novel technique to expedite the convergence of MoMmatrix solution at a specific frequency is proposed, by extracting and applying Eigen-vectors from a previously solved neighboring frequency in an augmented generalized minimum residual (AGMRES) iterative framework. This technique can be applied in unison with any preconditioner. Numerical results demonstrate up to 40% speed-up in convergence using the proposed Eigen-AGMRES method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world has dominated by automation, wireless communication and various electronic equipments, which has led to the most undesirable offshoots like electromagnetic (EM) pollution. The rationale is environmental concern and the necessity to develop EM absorbing materials. This paper reviews the state of the art of designing polymer based nanocomposites containing nanoscopic particles with high electrical conductivity and complex microwave properties for enhanced EM attenuation. Given the brevity of this review article, herein we have summarized the high frequency millimetre wave absorbing properties of polymer nanocomposites consisting of various nanoparticles that either reflect or absorb microwave radiation like electrically conducting carbon nanotubes (CNTs) and graphene nanosheets (GNs), high dielectric constant ceramic nanoparticles that show relaxation loss in the microwave frequency and magnetic metal and ferrite nanoparticles that absorb microwave radiation through natural resonance, eddy current and hysteresis losses. Furthermore, we have stressed the necessity and impact of hybrid nanoparticles consisting of magnetic and dielectric nanoparticles along with conducting inclusions like CNT and GNs in this review. Electromagnetic interference (EMI) theory and necessary criterion for attenuation has been briefly discussed. The emphasis is made on various mechanisms towards EM attenuation controlled by these nanoparticles. Various structures developed using polymer nanocomposites like bulk, foam and layered structures and their effect on EM attenuation has been elaborately discussed. In addition, various covalent/non-covalent modifications on nanoparticles have been juxtaposed in context to EM attenuation. In addition, we have highlighted important facets and direction for enhancing the microwave attenuation. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, a Field Programmable Gate Array (FPGA)-based hardware accelerator for 3D electromagnetic extraction, using Method of Moments (MoM) is presented. As the number of nets or ports in a system increases, leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products presents a time bottleneck in a linear-complexity fast solver framework. In this work, an FPGA-based hardware implementation is proposed toward a two-level parallelization scheme: (i) matrix level parallelization for single RHS and (ii) pipelining for multiple-RHS. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple nets in a Ball Grid Array (BGA) package. The acceleration is shown to be linearly scalable with FPGA resources and speed-ups over 10x against equivalent software implementation on a 2.4GHz Intel Core i5 processor is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board with the implemented design operating at 200MHz clock frequency. (c) 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:776-783, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GPR is widely used for ballast fouling identification, however, there are no robust guidelines to find the degree and type of fouling quantitatively. In this study, GPR studies were carried out on model and actual railway tracks using three ground coupled antennas and considering three fouling materials. Three ground coupled antennas viz., 100 MHz, 500 MHz and 800 MHz antennas were used for the initial survey and it was found that the 800 MHz ground coupled antenna is an optimum one to get quality results. Three major fouling materials viz., screened/broken ballast, coal and iron ore were used to construct prototype model sections, which were 1/2 of the actual Indian broad-gauge railway track. A separate model section has been created for each degree and type of fouling and GPR surveys were carried out. GPR study shows that increasing the fouling content results in a decrease in the Electromagnetic Wave (EMW) velocity and an increase in the dielectric constant. EMW velocity of ballast fouled with screened ballast was found to be more than coal fouled ballast and iron ore fouled ballast at any degree of fouling and EMW velocity of iron ore fouled ballast was found to be less than coal and screen ballast fouled ballast. Dielectric constant of iron ore fouled ballast was found to be higher than coal and screen ballast fouled ballast for all degrees of fouling. Average slope of the trend line of screen ballast fouled section is low (25.6 degrees), coal fouled ballast is medium (27.8 degrees) and iron ore fouled ballast is high (47.6 degrees). (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ultra Wide Band (UWB) system has been a subject of research in the last few years due to its utility in various high power electromagnetic applications. Due to its simplicity in design and fabrication, the Half Impulse Radiating Antenna (HIRA) based UWB system has attracted many researchers. Effectiveness of a UWB system, in terms of the bandwidth of the radiated pulse depends on the duration of the radiated field which is typically of sub nanosecond regime. This duration in turn depends on the closure time of the switch used in the UWB pulsed power source. This paper presents the work carried out on the pressurised gas switch of a 50 kV pulsed power system of a HIRA based UWB system. The aim of the present work is to establish the relationship between the pulser switch breakdown voltage and gas pressure, rise time and gas pressure as well as the dependency of the Pulse Repetition Rate (PRR) on the switch breakdown voltage.