235 resultados para Delta(9)-desaturase
Resumo:
The strain-controlled fatigue behaviour of Ti-6Al-4V alloy with up to 0.11 wt.% B addition was investigated. Results show significant softening when the strain amplitudes, Delta epsilon(T)/2, are >= 0.75%. B addition was found to improve the fatigue life for Delta epsilon(T)/2 <= 0.75% as it corresponds to the elastic regime and hence is strength dominated. At Delta epsilon(T)/2 = 1%, in contrast, the base alloy exhibits higher fatigue life as TiB particle cracking due to strain incompatibility causes easy crack nucleation in the B-modified alloys. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Here we report chromium isotope compositions, expressed as delta Cr-53/ 52 in per mil (&) relative to NIST 979, measured in selected Cr-rich minerals and rocks formed by the primary magmatic as well as the secondary metamorphic and weathering processes. The main objectives of this study were: (i) to further constrain the isotope composition of the Earth's mantle Cr inventory and its possible variation during geological history, based on the analysis of globally distributed and stratigraphically constrained mantle-derived chromites; and (ii) to investigate the magnitude and systematics of Cr isotope fractionation during oxidative weathering and secondary alteration (i. e., hydration, serpentinization) of the magmatic Cr sources. Specifically, we analyzed delta Cr-53/ 52 in a set of globally distributed mantle-derived chromites (FeMgCr2O4, n = 30) collected from various locations in Europe, Asia, Africa and South America, and our results confirm that a chromite-hosted Earth's mantle Cr inventory is uniform at - 0.079 +/- 0.129& (2SD), which we named here as a ` canonical' mantle d 53/ 52 Cr signature. Furthermore our dataset of stratigraphically constrained chromites, whose crystallization ages cover most of the Earth's geological history, indicate that the bulk Cr isotope composition of the chromite-hosted mantle inventory has remained uniform, within about +/- 0.100&, since at least the Early Archean times (similar to 3500 million years ago, Ma). To investigate the systematics of Cr isotope fractionation associated with alteration processes we analyzed a number of secondary Cr-rich minerals and variably altered ultramafic rocks (i. e., serpentinized harzburgites, lherzolites) that revealed large positive delta Cr-53/ 52 anomalies that are systematically shifted to higher values with an increasing degree of alteration and serpentinization. The degree of aqueous alteration and serpentinization was quantified by the abundances of fluid-mobile (Rb, K) elements, and by the Loss On Ignition (LOI) parameter, which determines the amount of structurally bound water (OH/ H2O) present in secondary hydrated minerals like serpentine. Overall, we observed that altered ultramafic rocks that yielded the highest LOI values, and the lowest amounts of fluid mobile elements, also yielded the heaviest delta Cr-53/ 52 signatures. Therefore, we conclude that secondary alteration (i.e., hydration, serpentinization) of ultramafic rocks in near-surface oxidative environments tend to shift the bulk Cr isotope composition of the weathered products to isotopically heavier values, pointing to a dynamic redox cycling of Cr in the Earth's crustal and near-surface environments. Hence, if validated by future
Resumo:
ZnAl2O4:Dy3+ (1-9 mol%) nanophosphors were synthesized by a simple, cost effective and environmental friendly route using Euphorbia tirucalli plant latex. The structural properties and morphological features of the phosphors were well studied by PXRD, FTIR, SEM and TEM measurements. The luminescent properties of ZnAl2O4:Dy3+ (1-9 mol%) nanophosphors were investigated from the excitation and emission spectra. The phosphor performance was evaluated by color co-ordinates. The values were well located in the near white region as a result it was highly useful for the fabrication of green component in WLEDs. The average particle size was found to be similar to 9-18 nm and same was confirmed by TEM and Scherrer's method. The highest photoluminescence (PL) and thermoluminescence (TL) intensity was obtained to be similar to 7 mol% Dy3+ concentration. A single TL glow peak was recorded at 172 degrees C at a warming rate of 2.5 degrees Cs (1). The intensity at 172 degrees C peak increases linearly up to 1 kGy and after that it diminishes. PL intensity was studied with different plant latex concentration (2-8 ml) and highest PL intensity was recorded for similar to 8 ml. The optimized phosphor showed good reusability, low fading and wide range of linearity with gamma-dose hence the phosphor was quite useful in radiation dosimetry. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This study presents the synthesis, characterization, and kinetics of steam reforming of methane and water gas shift (WGS) reactions over highly active and coke resistant Zr0.93Ru0.05O2-delta. The catalyst showed high activity at low temperatures for both the reactions. For WGS reaction, 99% conversion of CO with 100% H-2 selectivity was observed below 290 degrees C. The detailed kinetic studies including influence of gas phase product species, effect of temperature and catalyst loading on the reaction rates have been investigated. For the reforming reaction, the rate of reaction is first order in CH4 concentration and independent of CO and H2O concentration. This indicates that the adsorptive dissociation of CH4 is the rate determining step. The catalyst also showed excellent coke resistance even under a stoichiometric steam/carbon ratio. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic nature of Ru species. The associative mechanism involving the surface formate as an intermediate was used to correlate experimental data. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
CuIn1-xAlxSe2 (CIASe) thin films were grown by a simple sol-gel route followed by annealing under vacuum. Parameters related to the spin-orbit (Delta(SO)) and crystal field (Delta(CF)) were determined using a quasi-cubic model. Highly oriented (002) aluminum doped (2%) ZnO, 100 nm thin films, were co-sputtered for CuIn1-xAlxSe2/AZnO based solar cells. Barrier height and ideality factor varied from 0.63 eV to 0.51 eV and 1.3186 to 2.095 in the dark and under 1.38 A. M 1.5 solar illumination respectively. Current-voltage characteristics carried out at 300 K were confined to a triangle, exhibiting three limiting conduction mechanisms: Ohms law, trap-filled limit curve and SCLC, with 0.2 V being the cross-over voltage, for a quadratic transition from Ohm's to Child's law. Visible photodetection was demonstrated with a CIASe/AZO photodiode configuration. Photocurrent was enhanced by one order from 3 x 10(-3) A in the dark at 1 V to 3 x 10(-2) A upon 1.38 sun illumination. The optimized photodiode exhibits an external quantum efficiency of over 32% to 10% from 350 to 1100 nm at high intensity 17.99 mW cm(-2) solar illumination. High responsivity R-lambda similar to 920 A W-1, sensitivity S similar to 9.0, specific detectivity D* similar to 3 x 10(14) Jones, make CIASe a potential absorber for enhancing the forthcoming technological applications of photodetection.
Resumo:
Ge2Sb2Te5 (GST) is well known for its phase change properties and applications in memory and data storage. Efforts are being made to improve its thermal stability and transition between amorphous and crystalline phases. Various elements are doped to GST to improve these properties. In this work, Se has been doped to GST to study its effect on phase change properties. Amorphous GST film crystallized in to rock salt (NaCl) type structure at 150 degrees C and then transformed to hexagonal structure at 250 degrees C. Interestingly, Se doped GST ((GST)(0.9)Se-0.1) film crystallized directly into hexagonal phase and the intermediate phase of NaCl is not observed. The crystallization temperature (T-c) of (GST)(0.9)Se-0.1 is around 200 degrees C, which is 50 degrees C higher than the T-c of GST. For (GST)(0.9)Se-0.1, the threshold switching occurs at about 4.5V which is higher than GST (3 V). Band gap (E-opt) values of as deposited films are calculated from Tauc plot which are 0.63 eV for GST and 0.66 eV for (GST)(0.9)Se-0.1. The E-opt decreases for the films annealed at higher temperatures. The increased T-c, E-opt, the contrast in resistance and the direct transition to hexagonal phase may improve the data readability and thermal stability in the Se doped GST film. (C) 2014 AIP Publishing LLC.
Resumo:
The objective in this work is to develop downscaling methodologies to obtain a long time record of inundation extent at high spatial resolution based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellites (GIEMS) dataset. In semiarid regions, high-spatial-resolution a priori information can be provided by visible and infrared observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). The study concentrates on the Inner Niger Delta where MODIS-derived inundation extent has been estimated at a 500-m resolution. The space-time variability is first analyzed using a principal component analysis (PCA). This is particularly effective to understand the inundation variability, interpolate in time, or fill in missing values. Two innovative methods are developed (linear regression and matrix inversion) both based on the PCA representation. These GIEMS downscaling techniques have been calibrated using the 500-m MODIS data. The downscaled fields show the expected space-time behaviors from MODIS. A 20-yr dataset of the inundation extent at 500 m is derived from this analysis for the Inner Niger Delta. The methods are very general and may be applied to many basins and to other variables than inundation, provided enough a priori high-spatial-resolution information is available. The derived high-spatial-resolution dataset will be used in the framework of the Surface Water Ocean Topography (SWOT) mission to develop and test the instrument simulator as well as to select the calibration validation sites (with high space-time inundation variability). In addition, once SWOT observations are available, the downscaled methodology will be calibrated on them in order to downscale the GIEMS datasets and to extend the SWOT benefits back in time to 1993.
Resumo:
The effect of Sr doping in CeO2 for its use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs) has been explored here. Ce1-xSrxO2-delta (x = 0.05-0.2) are successfully synthesized by citrate-complexation method. XRD, Raman, FT-IR, FE-SEM/EDX and electrochemical impedance spectra are used for structural and electrical characterizations. The formation of well crystalline cubic fluorite structured solid solution is observed for x = 0.05 based on XRD and Raman spectra. For compositions i.e., x > 0.05, however, a secondary phase of SrCeO3 is confirmed by the peak at 342 cm(-1) in Raman spectra. Although the oxygen ion conductivity was found to decrease with increase in x, based on ac-impedance studies, conductivity of Ce0.95Sr0.05O2-delta was found to be higher than of Ce0.95Gd0.1O2-delta and Ce0.8Gd0.2O2-delta. The decrease in conductivity of Ce1-xSrxO2-delta with increasing dopant concentration is ascribed to formation of impurity phase SrCeO3 as well as the formation of neutral associated pairs, Se `' Ce V-o. The activation energies are found to be 0.77, 0.83, 0.85 and 0.90 eV for x = 0.05, 0.1, 0.15 and 0.20, respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A colorimetric and ``turn-on'' fluorescent chemosensor based on 1,9-pyrazoloanthrone specifically for cyanide and fluoride ion detection shows a remarkable solid state reaction when crystals of tetrabutylammonium cyanide and fluoride are brought in physical contact with 1,9-pyrazoloanthrone. X-ray crystal structures of 1,9-pyrazoloanthrone and complexes have been determined, and the ion sensing activity (detection limit of 0.2 and 2 ppb) has been inferred based on spectroscopic and structural features.
Resumo:
A typical Ce0.85Gd0.15O2-delta (CDC15) composition of CeO2-Gd2O3 system is synthesized by modified sol - gel technique known as citrate-complexation. TG-DTA, XRD, FT-IR, Raman, FE-SEM/EDX and ac impedance analysis are carried out for structural and electrical characterization. XRD pattern confirmed the well crystalline cubic fluorite structure of CDC15 after calcining at 873 K. Raman spectral bands at 463, 550 and 600 cm(-1) are also in agreement with these structural features. FE-SEM image shows well-defined grains separated from grain boundary and good densification. Ac impedance studies reveal that GDC15 has oxide ionic conductivity similar to that reported for Ce0.9Gd0.1O2-delta (GDC10) and Ce0.8Gd0.2O2-delta (GDC20). Ionic and electronic transference numbers at 673 K are found to be 0.95 and 0.05, respectively. This indicates the possible application of GDC15 as a potential electrolyte for IT-SOFCs. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Alumina thin films were deposited on titanium (Ti) and fused quartz by both direct and reactive pulsed rf magnetron sputtering techniques. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy were utilized to study the phases and surface morphology of the films. The as-deposited alumina thin films were amorphous. However, after annealing at 500 degrees C in vacuum, the crystalline peaks corresponding to the Theta (0), Delta (8) and Chi ()) alumina phases were obtained. The optical transmittance and reflectance as well as IR emittanc,e data were also evaluated for the thin films. The transmittance, e.g., (similar to 90%) of the bare quartz substrate was not changed even when the alumina thin films were deposited for an hour. However, further increase in deposition time (e.g., 7 h) of the alumina thin films showed only a marginal decrease (e.g., similar to 5%) in average transmittance of the bare quartz substrate. The direct and indirect optical band gaps and extinction coefficient of the alumina films were estimated from the transmittance spectra. The IR emittance of the Ti substrate (e.g., similar to 16%) was almost constant after depositing alumina thin films for an hour. Further increase in deposition time showed only a marginal increase (e.g., similar to 9%) in IR emittance value. Therefore, it is proposed that the alumina films developed in the present work can act as a protective cover for the Ti substrate while retaining the thermo-optical properties of the same. The nanohardness and Young's modulus of the alumina thin films were evaluated by the novel nanoindentation technique. The nanohardness was measured as similar to 6 GPa. Further, Young's modulus was evaluated as similar to 116 GPa. The magnitudes of the nanomechanical properties of the thin films were a little smaller than those reported in the literature. This was linked to the lack of crystalline phases in the as-deposited alumina thin films. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Single-stranded DNA binding proteins (SSBs) are vital in all organisms. SSBs of Escherichia coli (EcoSSB) and Mycobacterium tuberculosis (MtuSSB) are homotetrameric. The N-terminal domains (NTD) of these SSBs (responsible for their tetramerization and DNA binding) are structurally well defined. However, their C-terminal domains (CTD) possess undefined structures. EcoSSB NTD consists of beta 1-beta 1'-beta 2-beta 3-alpha-beta 4-beta 45(1)-beta 45(2)-beta 5 secondary structure elements. MtuSSB NTD includes an additional beta-strand (beta 6) forming a novel hook-like structure. Recently, we observed that MtuSSB complemented an E. coli Delta ssb strain. However, a chimeric SSB (m beta 4-beta 5), wherein only the terminal part of NTD (beta 4-beta 5 region possessing L-45 loop) of EcoSSB was substituted with that from MtuSSB, failed to function in E. coli in spite of its normal DNA binding and oligomerization properties. Here, we designed new chimeras by transplanting selected regions of MtuSSB into EcoSSB to understand the functional significance of the various secondary structure elements within SSB. All chimeric SSBs formed homotetramers and showed normal DNA binding. The m beta 4-beta 6 construct obtained by substitution of the region downstream of beta 5 in m beta 4-beta 5 SSB with the corresponding region (beta 6) of MtuSSB complemented the E. coli strain indicating a functional interaction between the L-45 loop and the beta 6 strand of MtuSSB.
Resumo:
N-Alkyl substituted pyrazoloanthrone derivatives were synthesized, characterized and tested for their in vitro inhibitory activity over c-Jun N-terminal kinase (JNK). Among the tested molecules, a few derivatives showed significant inhibitory activity against JNK with minimal off-target effect on other mitogen-activated protein kinase (MAP kinase) family members such as MEK1/2 and MKK3,6. These results suggested that N-alkyl (propyl and butyl) bearing pyrazoloanthrone scaffolds provide promising therapeutic inhibitors for JNK in regulating inflammation associated disorders.
Resumo:
Amorphous solids prepared from their melt state exhibit glass transition phenomenon upon heating. Viscosity, specific heat, and thermal expansion coefficient of the amorphous solids show rapid changes at the glass transition temperature (T-g). Generally, application of high pressure increases the T-g and this increase (a positive dT(g)/dP) has been understood adequately with free volume and entropy models which are purely thermodynamic in origin. In this study, the electrical resistivity of semiconducting As2Te3 glass at high pressures as a function of temperature has been measured in a Bridgman anvil apparatus. Electrical resistivity showed a pronounced change at T-g. The T-g estimated from the slope change in the resistivity-temperature plot shows a decreasing trend (negative dT(g)/dP). The dT(g)/dP was found to be -2.36 degrees C/kbar for a linear fit and -2.99 degrees C/kbar for a polynomial fit in the pressure range 1 bar to 9 kbar. Chalcogenide glasses like Se, As2Se3, and As30Se30Te40 show a positive dT(g)/dP which is very well understood in terms of the thermodynamic models. The negative dT(g)/dP (which is generally uncommon in liquids) observed for As2Te3 glass is against the predictions of the thermodynamic models. The Adam-Gibbs model of viscosity suggests a direct relationship between the isothermal pressure derivative of viscosity and the relaxational expansion coefficient. When the sign of the thermal expansion coefficient is negative, dT(g)/dP = Delta k/Delta alpha will be less than zero, which can result in a negative dT(g)/dP. In general, chalcogenides rich in tellurium show a negative thermal expansion coefficient (NTE) in the supercooled and stable liquid states. Hence, the negative dT(g)/dP observed in this study can be understood on the basis of the Adams-Gibbs model. An electronic model proposed by deNeufville and Rockstad finds a linear relation between T-g and the optical band gap (E-g for covalent semiconducting glasses when they are grouped according to their average coordination number. The electrical band gap (Delta E) of As2Te3 glass decreases with pressure. The optical and electrical band gaps are related as Delta E-g = 2 Delta E; thus, a negative dT(g)/dP is expected when As2Te3 glass is subjected to high pressures. In this sense, As2Te3 is a unique glass where its variation of T-g with pressure can be understood by both electronic and thermodynamic models.