340 resultados para DENSITY PROBLEM
Resumo:
Fuzzy logic control (FLC) systems have been applied as an effective control system in various fields, including vibration control of structures. The advantage of this approach is its inherent robustness and ability to handle non‐linearities and uncertainties in structural behavior and loading. The study evaluates the three‐dimensional benchmark control problem for a seismically excited highway bridge using an ANFIS driven hydraulic actuators. An ANN based training strategy that considers both velocity and acceleration feedback together with a fuzzy logic rule base is developed. Present study needs only 4 accelerometers and 4 fuzzy rule bases to determine the control force, instead of 8 accelerometers and 4 displacement transducers used in the benchmark study problem. The results obtained are better than that obtained from the benchmark control algorithm.
Resumo:
Dial-a-ride problem (DARP) is an optimization problem which deals with the minimization of the cost of the provided service where the customers are provided a door-to-door service based on their requests. This optimization model presented in earlier studies, is considered in this study. Due to the non-linear nature of the objective function the traditional optimization methods are plagued with the problem of converging to a local minima. To overcome this pitfall we use metaheuristics namely Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System (AIS). From the results obtained, we conclude that Artificial Immune System method effectively tackles this optimization problem by providing us with optimal solutions. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
Structural and charge density distribution studies have been carried out on a single crystal data of an ammonium borate, [C(10)H(26)N(4)][B(5)O(6)(OH)(4)](2), synthesized by solvothermal method. Further, the experimentally observed geometry is used for the theoretical charge density calculations using the B3LYP/6-31G** level of theory, and the results are compared with the experimental values. Topological analysis of charge density based on the Atoms in Molecules approach for B-O bonds exhibit mixed covalent/ionic character. Detailed analysis of the hydrogen bonds in the crystal structure in the ammonium borate provides insights into the understanding of the reaction pathways that net atomic charges and electrostatic potential isosurfaces also give additional such systems. could result in the formation of borate minerals. The input to evaluate chemical and physical properties in such systems.
Resumo:
An extension of the supramolecular synthon-based fragment approach (SBFA) method for transferability of multipole charge density parameters to include weak supramolecular synthons is proposed. In particular, the SBFA method is applied to C-H center dot center dot center dot O, C-H center dot center dot center dot F, and F center dot center dot center dot F containing synthons. A high resolution charge density study has been performed on 4-fluorobenzoic acid to build a synthon library for C-H center dot center dot center dot F infinite chain interactions. Libraries for C-H center dot center dot center dot O and F center dot center dot center dot F synthons were taken from earlier work. The SBFA methodology was applied successfully to 2- and 3-fluorobenzoic acids, data sets for which were collected in a routine manner at 100 K, and the modularity of the synthons was demonstrated. Cocrystals of isonicotinamide with all three fluorobenzoic acids were also studied with the SBFA method. The topological analysis of inter- and intramolecular interaction regions was performed using Bader's AIM approach. This study shows that the SBFA method is generally applicable to generate charge density maps using information from multiple intermolecular regions.
Resumo:
In terabit-density magnetic recording, several bits of data can be replaced by the values of their neighbors in the storage medium. As a result, errors in the medium are dependent on each other and also on the data written. We consider a simple 1-D combinatorial model of this medium. In our model, we assume a setting where binary data is sequentially written on the medium and a bit can erroneously change to the immediately preceding value. We derive several properties of codes that correct this type of errors, focusing on bounds on their cardinality. We also define a probabilistic finite-state channel model of the storage medium, and derive lower and upper estimates of its capacity. A lower bound is derived by evaluating the symmetric capacity of the channel, i.e., the maximum transmission rate under the assumption of the uniform input distribution of the channel. An upper bound is found by showing that the original channel is a stochastic degradation of another, related channel model whose capacity we can compute explicitly.
Resumo:
The pursuit-evasion problem of two aircraft in a horizontal plane is modelled as a zerosum differential game with capture time as payoff. The aircraft are modelled as point masses with thrust and bank angle controls. The games of kind and degree for this differential game are solved.
Resumo:
In this paper, we compare the experimental results for Tamil online handwritten character recognition using HMM and Statistical Dynamic Time Warping (SDTW) as classifiers. HMM was used for a 156-class problem. Different feature sets and values for the HMM states & mixtures were tried and the best combination was found to be 16 states & 14 mixtures, giving an accuracy of 85%. The features used in this combination were retained and a SDTW model with 20 states and single Gaussian was used as classifier. Also, the symbol set was increased to include numerals, punctuation marks and special symbols like $, & and #, taking the number of classes to 188. It was found that, with a small addition to the feature set, this simple SDTW classifier performed on par with the more complicated HMM model, giving an accuracy of 84%. Mixture density estimation computations was reduced by 11 times. The recognition is writer independent, as the dataset used is quite large, with a variety of handwriting styles.
Resumo:
In this paper, we explore the use of LDPC codes for nonuniform sources under distributed source coding paradigm. Our analysis reveals that several capacity approaching LDPC codes indeed do approach the Slepian-Wolf bound for nonuniform sources as well. The Monte Carlo simulation results show that highly biased sources can be compressed to 0.049 bits/sample away from Slepian-Wolf bound for moderate block lengths.
Resumo:
An analytical analysis of ferroresonance with possible cases of its occurrence in series-and shunt-compensated systems is presented. A term `percentage unstable zoneÿ is defined to compare the jump severity of different nonlinearities. A direct analytical method has been shown to yield complete information. An attempt has been made to find all four critical points: jump-from and jump-to points of ferroresonance jump phenomena. The systems considered for analysis are typical 500 kV transmission systems of various lengths.
Resumo:
This report describes some preliminary experiments on the use of the relaxation technique for the reconstruction of the elements of a matrix given their various directional sums (or projections).
Resumo:
The Ulam’s problem is a two person game in which one of the player tries to search, in minimum queries, a number thought by the other player. Classically the problem scales polynomially with the size of the number. The quantum version of the Ulam’s problem has a query complexity that is independent of the dimension of the search space. The experimental implementation of the quantum Ulam’s problem in a Nuclear Magnetic Resonance Information Processor with 3 quantum bits is reported here.
Resumo:
We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.
Resumo:
Amorphous silicon carbide (a-Si(1-x)C(x)) films were deposited on silicon (100) and quartz substrates by pulsed DC reactive magnetron sputtering of silicon in methane (CH(4))-Argon (Ar) atmosphere. The influence of substrate temperature and target power on the composition, carbon bonding configuration, band gap, refractive index and hardness of a-SiC films has been investigated. Increase in substrate temperature results in slightly decreasing the carbon concentration in the films but favors silicon-carbon (Si-C) bonding. Also lower target powers were favorable towards Si-C bonding. X-ray photoelectron spectroscopy (XPS) results agree with the Fourier Transform Infrared (FTIR), UV-vis spectroscopy results. Increase in substrate temperature resulted in increased hardness of the thin films from 13 to 17 GPa and the corresponding bandgap varied from 2.1 to 1.8 eV. (C) 2011 Elsevier B.V. All rights reserved.