287 resultados para Cyclic group
Resumo:
The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671946]
Resumo:
In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.
Resumo:
For the analysis and design of pile foundation used for coastal structures the prediction of cyclic response, which is influenced by the nonlinear behavior, gap (pile soil separation) and degradation (reduction in strength) of soil becomes necessary. To study the effect of the above parameters a nonlinear cyclic load analysis program using finite element method is developed, incorporating the proposed gap and degradation model and adopting an incremental-iterative procedure. The pile is idealized using beam elements and the soil by number of elastoplastic sub-element springs at each node. The effect of gap and degradation on the load-deflection behavior. elasto-plastic sub-element and resistance of the soil at ground-line have been clearly depicted in this paper.
Resumo:
Nonlinear analysis of batter piles in soft clay is performed using the finite element technique. As the batter piles are not only governed by lateral load but also axial load, the effect of P- Delta moment and geometric stiffness matrix is included in the analysis. For implementing the nonlinear soil behavior, reduction in soil strength (degradation), and formation of gap with number of load cycles, a numerical model is developed where a hyperbolic relation is adopted for the soil in static condition and hyperbolic relation considering degradation and gap for cyclic load condition. The numerical model is validated with published experimental results for cyclic lateral loading and the hysteresis loops are developed to predict the load-deflection behavior and soil resistance behavior during consecutive cycles of loading. This paper highlights the importance of a rigorous degradation model for subsequent cycles of loading on the pile-soil system by a hysteretic representation.
Resumo:
Most HIV-1 broadly neutralizing antibodies are directed against the gp120 subunit of the env surface protein. Native env consists of a trimer of gp120-gp41 heterodimers, and in contrast to monomeric gp120, preferentially binds CD4 binding site (CD4bs)-directed neutralizing antibodies over non-neutralizing ones. Some cryo-electron tomography studies have suggested that the V1V2 loop regions of gp120 are located close to the trimer interface. We have therefore designed cyclically permuted variants of gp120 with and without the h-CMP and SUMO2a trimerization domains inserted into the V1V2 loop. h-CMP-V1cyc is one such variant in which residues 153 and 142 are the N- and C-terminal residues, respectively, of cyclically permuted gp120 and h-CMP is fused to the N-terminus. This molecule forms a trimer under native conditions and binds CD4 and the neutralizing CD4bs antibodies b12 with significantly higher affinity than wild-type gp120. It binds non-neutralizing CD4bs antibody F105 with lower affinity than gp120. A similar derivative, h-CMP-V1cycl, bound the V1V2 loop-directed broadly neutralizing antibodies PG9 and PG16 with similar to 20-fold higher affinity than wild-type JRCSF gp120. These cyclic permutants of gp120 are properly folded and are potential immunogens. The data also support env models in which the V1V2 loops are proximal to the trimer interface.
Resumo:
The vertical uplift resistance of a group of two horizontal coaxial strip anchors, embedded in a general c-phi soil (where c is the unit cohesion and phi is the soil friction angle), has been determined by using the lower bound finite element limit analysis. The variation of uplift factors F-c and F-gamma, due to the components of soil cohesion and unit weight, respectively, with changes in depth (H)/width (B) has been established for different values of vertical spacing (S)/B. As compared to a single isolated anchor, the group of two anchors provides a significantly greater magnitude of F-c for phi <= 20 degrees and with H/B >= 3. The magnitude of F-c becomes almost maximum when S/B is kept closer to 0.5H/B. On the other hand, with the same H/B, as compared to a single anchor, hardly any increase in F-gamma occurs for a group of two anchors.
Resumo:
Designing a heat sink based on a phase change material (PCM) under cyclic loading is a critical issue. For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely resolidify during the cooling period, so that that thermal storage unit can be operated for an unlimited number of cycles. Accordingly, studies are carried out to find the parameters influencing the behavior of a PCM under cyclic loading. A number of parameters are identified in the process, the most important ones being the duty cycle and heat transfer coefficient (h) for cooling. The required h or the required cooling period for complete resolidification for infinite cyclic operation of a conventional PCM-based heat sink is found to be very high and unrealistic with air cooling from the surface. To overcome this problem, the conventional design is modified where h and the area exposed to heat transfer can be independently controlled. With this arrangement, the enhanced area provided for cooling keeps h within realistic limits. Analytical investigation is carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to those with conventional designs. Experiments are also performed on both the conventional and the modified PCM-based heat sinks to validate the new findings.
Resumo:
Condensation reaction involving substituted aminobenzoic acids (2-aminobenzoic acid and 4-aminobenzoic acid) and acetylacetone results in the formation of ketoimines [CH3C(= O)CH2C(CH3)(= NAr)] (Ar = C6H4COOH-4; 1 and C6H4COOH-2 2). Compounds 1 and 2 have been characterized by spectroscopic techniques and by single crystal X-ray diffraction studies. The absorption, emission and lifetime measurement studies have also been performed for the new compounds. While compound 1 forms a linear chain type of aggregation though intermolecular hydrogen bonding, compound 2 forms a discrete dimer in the solid state.
Resumo:
A density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity Z = 3 and antiferromagnetic exchange between nearest-neighbor spins s = 1/2 or 1 sites in successive generations g. The algorithm is accurate for s = 1 sites. The ground states are magnetic with spin S(g) = 2(g)s, staggered magnetization that persists for large g > 20, and short-range spin correlation functions that decrease exponentially. A finite energy gap to S > S(g) leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for s = 1/2 and 1 are interpreted in terms of an analytical three-site model.
Resumo:
The vertical uplift resistance for a group of two horizontal coaxial rigid strip anchors embedded in clay under undrained condition has been determined by using the upper bound theorem of limit analysis in combination with finite elements. An increase of undrained shear strength of soil mass with depth has been incorporated. The uplift factor F-c gamma has been computed. As compared to a single isolated anchor, a group of two anchors provides greater magnitude of the uplift resistance. For a given embedment ratio, the group of two anchors generates almost the maximum uplift resistance when the upper anchor is located midway between ground surface and the lower anchor. For a given embedment ratio, F-c gamma increases linearly with an increase in the normalized unit weight of soil mass up to a certain value before attaining a certain maximum magnitude; the maximum value of F-c gamma increases with an increase in embedment ratio. DOI: 10.1061/(ASCE)GT.19435606.0000599. (C) 2012 American Society of Civil Engineers.
Resumo:
Layered LiNi0.8Co0.2O2 crystallizing in R (3) over barm space group is synthesized by decomposing the constituent metal-nitrate precursors. Oxidizing nature of metal nitrates stabilizes nickel in +3 oxidation state, enabling a high degree of cation ordering in the layered LiNi0.8Co0.2O2. The powder sample characterized by XRD Rietveld refinement reveals <2% Li-Ni site exchange in the layers. Scanning electron microscopic studies on the as-synthesized LiNi0.8Co0.2O2 sample reflect well defined particles of cubic morphology with particle size ranging between 200 and 250 nm. Cyclic voltammograms suggest that LiNi0.8Co0.2O2 undergoes phase transformation on first charge with resultant phase being completely reversible in subsequent cycles. The first-charge-cycle phase transition is further supported by impedance spectroscopy that shows substantial reduction in resistance during initial de-intercalation. Galvanostatic charge-discharge cycles reflect a first-discharge capacity of 184 mAh g(-1) which is stabilized at 170 mAh g(-1) over 50 cycles.
Resumo:
Graphene's nano-dimensional nature and excellent electron transfer properties underlie its electrocatalytic behavior towards certain substances. In this light, we have used graphene in the electrochemical detection of bisphenol A. Graphene sheets were produced via soft chemistry route involving graphite oxidation and chemical reduction. X-ray diffraction, Fourier transform infra-red (FT-IR) and Raman spectroscopy were used for the characterization of the as-synthesized graphene. Graphene exhibited amorphous structure in comparison with pristine graphite from XRD spectra. FTIR showed that graphene exhibits OH and COOH groups due to incomplete reduction. Raman spectroscopy revealed that multi-layered graphene was produced due to low intensity of the 2D-peak. Glassy carbon electrode was modified with graphene by a simple drop and dry method. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. The prepared graphene- modified glassy carbon electrode exhibited more facile electron kinetics and enhanced current of about 75% when compared to the unmodified glassy carbon electrode. The modified electrode was used for the detection of bisphenol A. Under the optimum conditions, the oxidation peak current of bisphenol A varied linearly with concentration over a wide range of 5 x 10(-8) mol L-1 to 1 x 10(-6) mol L-1 and the detection limit of this method was as low as 4.689 x 10(-8) M. This method was also employed to determine bisphenol A in a real sample
Resumo:
Cyclic di-GMP (c-di-GMP), a ubiquitous bacterial second messenger, has emerged as a key controller of several biological processes. Numbers of reports that deal with the mechanistic aspects of this second messenger have appeared in the literature. However, the lack of a reporter tag attached to the c-di-GMP at times limits the understanding of further details. In this study, we have chemically coupled N-methylisatoic anhydride (MANT) with c-di-GMP, giving rise to Mant-(c-di-GMP) or MANT-CDG. We have characterized the chemical and physical properties and spectral behavior of MANT-CDG. The fluorescence of MANT-CDG is sensitive to changes in the microenvironment, which helped us study its interaction with three different c-di-GMP binding proteins (a diguanylate cyclase, a phosphodiesterase, and a PilZ domain-containing protein). In addition, we have shown here that MANT-CDG can inhibit diguanylate cyclase activity; however, it is hydrolyzed by c-di-GMP specific phosphodiesterase. Taken together, our data suggest that MANT-CDG behaves like native c-di-GMP, and this study raises the possibility that MANT-CDG will be a valuable research tool for the in vitro characterization of c-di-GMP signaling factors.
Resumo:
The activities of a number of proteins are regulated by the binding of cAMP and cGMP to cyclic nucleotide binding (CNB) domains that are found associated with one or more effector domains with diverse functions. Although the conserved architecture of CNB domains has been extensively studied by x-ray crystallography, the key to unraveling the mechanisms of cAMP action has been protein dynamics analyses. Recently, we have identified a novel cAMP-binding protein from mycobacteria, where cAMP regulates the activity of an associated protein acetyltransferase domain. In the current study, we have monitored the conformational changes that occur upon cAMP binding to the CNB domain in these proteins, using a combination of bioluminescence resonance energy transfer and amide hydrogen/deuterium exchange mass spectrometry. Coupled with mutational analyses, our studies reveal the critical role of the linker region (positioned between the CNB domain and the acetyltransferase domain) in allosteric coupling of cAMP binding to activation of acetyltransferase catalysis. Importantly, major differences in conformational change upon cAMP binding were accompanied by stabilization of the CNB and linker domain alone. This is in contrast to other cAMP-binding proteins, where cyclic nucleotide binding has been shown to involve intricate and parallel allosteric relays. Finally, this powerful convergence of results from bioluminescence resonance energy transfer and hydrogen/deuterium exchange mass spectrometry reaffirms the power of solution biophysical tools in unraveling mechanistic bases of regulation of proteins in the absence of high resolution structural information.