224 resultados para CONTENT AUSTENITIC STEEL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instrumented microindentation (IM) on two Ni-Ti shape memory alloys (SMAs), where one is austenitic and the other is martensitic at room temperature, were conducted from 40 to 150 degrees C. Results show that the depth and work recovery ratios, eta(d) and eta(w) respectively, are complementary to each other. While eta(d) decreases gradually with temperature for austenite, it drops markedly for the martensite in the martensite-to-austenite transformation regime. These results affirm the utility of IM for characterizing SMAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive wear has been widely accepted as the type of wear which is most frequently encountered under fretting conditions. Present study has been carried out to study the mode of failure and mechanisms associated under conditions where strong adhesion prevails at the contact interface. Mechanical variables such as normal load, displacement amplitude, and environment conditions were controlled so as to simulate adhesion as the governing mechanism at the contact interface. Self-mated Stainless Steel (SS) and chromium carbide with 25% nickel chrome binder coatings using plasma spray and high-velocity oxy-fuel (HVOF) processes on SS were considered as the material for contacting bodies. Damage in the form of plastic deformation, fracture, and material transfer has been observed. Further, chromium carbide with 25% nickel chrome binder coatings using HVOF process on SS shows less fretting damage, and can be considered as an effective palliative against fretting damage, even under high vacuum conditions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entropy is a fundamental thermodynamic property that has attracted a wide attention across domains, including chemistry. Inference of entropy of chemical compounds using various approaches has been a widely studied topic. However, many aspects of entropy in chemical compounds remain unexplained. In the present work, we propose two new information-theoretical molecular descriptors for the prediction of gas phase thermal entropy of organic compounds. The descriptors reflect the bulk and size of the compounds as well as the gross topological symmetry in their structures, all of which are believed to determine entropy. A high correlation () between the entropy values and our information-theoretical indices have been found and the predicted entropy values, obtained from the corresponding statistically significant regression model, have been found to be within acceptable approximation. We provide additional mathematical result in the form of a theorem and proof that might further help in assessing changes in gas phase thermal entropy values with the changes in molecular structures. The proposed information-theoretical molecular descriptors, regression model and the mathematical result are expected to augment predictions of gas phase thermal entropy for a large number of chemical compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self assembled monolayer (SAM) of sodium oleate was generated on mild steel by the dip coating method. Formation of the SAM on mild steel was examined using Infrared Reflection Absorption Spectroscopy (IRRAS) and contact angle measurements. The chemical and anticorrosive properties of the SAM were analyzed using different techniques. IRRAS and water contact angle data revealed the crystallinity and chemical stability of the SAM modified mild steel. The electrochemical measurements showed that the mild steel with the sodium oleate derived SAM exhibited better corrosion resistance in saline water. The effect of temperature and pH on the SAM formation and its anti corrosion ability was explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cementite dissolution in cold-drawn pearlitic steel (0.8 wt.% carbon) wires has been studied by quantitative X-ray diffraction (XRD) and Mossbauer spectroscopy up to drawing strain 1.4. Quantification of cementite-phase fraction by Rietveld analysis has confirmed more than 50% dissolution of cementite phase at drawing strain 1.4. It is found that the lattice parameter of the ferrite phase determined by Rietveld refinement procedure remains nearly unchanged even after cementite dissolution. This confirms that the carbon atoms released after cementite dissolution do not dissolve in the ferrite lattice as Fe-C interstitial solid solution. Detailed analysis of broadening of XRD line profiles for the ferrite phase shows high density of dislocations (approximate to 10(15)/m(2)) in the ferrite matrix at drawing strain 1.4. The results suggest a dominant role of 111 screw dislocations in the cementite dissolution process. Post-deformation heat treatment leads to partial annihilation of dislocations and restoration of cementite phase. Based on these experimental observations, further supplemented by TEM studies, we have suggested an alternative thermodynamic mechanism of the dissolution process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates the feasibility of mesoscale (100 μm to mm) punching of multiple holes of intricate shapes in metals. Analytical modeling, finite element (FE)simulation, and experimentations are used in this work. Two dimensional FE simulations in ABAQUS were done with an assumed material modeling and plane-strain condition. A known analytical model was used and compared with the ABAQUS simulation results to understand the effects of clearance between the punch and the die. FE simulation in ABAQUS was done for different clearances and corner radii at punch, die, and holder. A set of punches and dies were used to punch out a miniature spring-steel gripper. Comparison of compliant grippers manufactured by wire-cut electro discharge machining(EDM) and punching shows that realizing sharp interior and re-entrant corners by punching is not easy to achieve. Punching of circular holes with 5 mm and 2.5 mm diameter is achieved. The possibility of realizing meso-scale parts with complicated shapes through punching is demonstrated in this work; and some strategies are suggested for improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented in this paper is an improvement over a spring-steel dual-axis accelerometer that we had reported earlier.The fabrication process (which entails wire-cut electro discharge machining of easily accessible and inexpensive spring-steelfoil) and the sensing of the displacement (which is done using off-the-shelf Hall-effect sensors) remain the same. Theimprovements reported here are twofold: (i) the footprint of the packaged accelerometer is reduced from 80 mm square to 40mm square, and (ii) almost perfect de-coupling and symmetry are achieved between the two in-plane axes of the packageddevice as opposed to the previous embodiment where this was not the case. Good linearity with about 40 mV/g was measuredalong both the in-plane axes over a range of 0.1 to 1 g. The first two natural frequencies of the devices are at 30 Hz and 100Hz, respectively, as per the experiment. The highlights of this work are cost-effective processing, easy integration of the Hall-effect sensing capability on a customised printed circuit board, and inexpensive packaging without overly compromising eitherthe overall size or the sensitivity of the accelerometer. Through this work, we have reaffirmed the practicability of spring-steelaccelerometers towards the eventual goal of making it compete with micro machined silicon accelerometers in terms of sizeand performance. The cost is likely to be much lower for the spring-steel accelerometers than that of silicon accelerometers, especially when the volume of production is low and the sensor is to be used as a single packaged unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (similar to 1.5 x 10(-6) mm(3)/Nm) and a modest COF (similar to 0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (similar to 2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu. (C) The Minerals, Metals & Materials Society and ASM International 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of conventional fuels such as Jet-A1 (aviation kerosene) and diesel with bio-derived components, referred to as biofttels, are gradually replacing the conventional fuels in aircraft and automobile engines. There is a lack of understanding on the interaction of spray drops of such biofuels with solid surfaces. The present study is an experimental investigation on the impact of biofuel drops onto a smooth stainless steel surface. The biofuel is a mixture of 90% commercially available camelina-derived biofuel and 10% aromatics. Biofuel drops were generated using a syringe-hypodermic needle arrangement. On demand, the needle delivers an almost spherical drop with drop diameter in the range 2.05-2.15 mm. Static wetting experiments show that the biofuel drop completely wets the stainless steel surface and exhibits an equilibrium contact angle of 5.6. High speed video camera was used to capture the impact dynamics of biofuel drops with Weber number ranging from 20 to 570. The spreading dynamics and maximum spreading diameter of impacting biofuel drops on the target surface were analyzed. For the impact of high Weber number biofuel drops, the spreading law suggests beta similar to tau(0.5) where beta is the spread factor and tau, the nondimensionalized time. The experimentally observed trend of maximum spread factor, beta(max) of camelina biofuel drop on the target surface with We compares well with the theoretically predicted trend from Ukiwe-Kwok model. After reaching beta(max), the impacting biofuel drop undergoes a prolonged sluggish spreading due to the high wetting nature of the camelina biofuel-stainless steel system. As a result, the final spread factor is found to be a little more than beta(max). (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Content Distribution Networks (CDNs) are widely used to distribute data to large number of users. Traditionally, content is being replicated among a number of surrogate servers, leading to high operational costs. In this context, Peer-to-Peer (P2P) CDNs have emerged as a viable alternative. An issue of concern in P2P networks is that of free riders, i.e., selfish peers who download files and leave without uploading anything in return. Free riding must be discouraged. In this paper, we propose a criterion, the Give-and-Take (G&T) criterion, that disallows free riders. Incorporating the G&T criterion in our model, we study a problem that arises naturally when a new peer enters the system: viz., the problem of downloading a `universe' of segments, scattered among other peers, at low cost. We analyse this hard problem, and characterize the optimal download cost under the G&T criterion. We propose an optimal algorithm, and provide a sub-optimal algorithm that is nearly optimal, but runs much more quickly; this provides an attractive balance between running time and performance. Finally, we compare the performance of our algorithms with that of a few existing P2P downloading strategies in use. We also study the computation time for prescribing the strategy for initial segment and peer selection for the newly arrived peer for various existing and proposed algorithms, and quantify cost-computation time trade-offs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure of an austenitic SS 304L rapidly quenched from its semi-solid state shows a unique annular austenitic ring in between the core of each globule and its ferritic outer layer. On the basis of experimental results and microstructural analysis, it is proposed that the ring is formed as a result of preferential austenitic phase nucleation in a small quantity of liquid entrapped between adjacent solid globules during rapid quenching, in spite of the fact that ferrite is the thermodynamically stable phase for the alloy. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a setting in which a single item of content is disseminated in a population of mobile nodes by opportunistic copying when pairs of nodes come in radio contact. The nodes in the population may either be interested in receiving the content (referred to as destinations) or not yet interested in receiving the content (referred to as relays). We consider a model for the evolution of popularity, the process by which relays get converted into destinations. A key contribution of our work is to model and study the joint evolution of content popularity and its spread in the population. Copying the content to relay nodes is beneficial since they can help spread the content to destinations, and could themselves be converted into destinations. We derive a fluid limit for the joint evolution model and obtain optimal policies for copying to relay nodes in order to deliver content to a desired fraction of destinations, while limiting the fraction of relay nodes that get the content but never turn into destinations. We prove that a time-threshold policy is optimal for controlling the copying to relays, i.e., there is an optimal time-threshold up to which all opportunities for copying to relays are exploited, and after which relays are not copied to. We then utilize simulations and numerical evaluations to provide insights into the effects of various system parameters on the optimally controlled co-evolution model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present discussion tries to bring out the importance of clay mineralogical composition of fine-grained soils on their liquid limit behaviour. It reinforces the author's observation that the undrained shear strengths at liquid limit water content and at plastic limit water content are not unique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of absorbed hydrogen on the mechanical behavior of a series of Ni-Nb-Zr amorphous metallic ribbons was investigated through nanoindentation experiments. It was revealed that the influence is significantly dependent on Zr content, that is, hydrogen induced softening in relatively low-Zr alloys, whereas hydrogen induced hardening in high-Zr alloys. The results are discussed in terms of the different roles of mobile and immobile hydrogen in the plastic deformation. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 degrees C was carried out and compared with the behavior at room temperature and 48 degrees C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5-4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films. (C) 2014 Elsevier Ltd. All rights reserved.