501 resultados para CARBON NUCLEOPHILES
Resumo:
Iron nanowires encapsulated in aligned carbon nanotube bundles show interesting magnetic properties. Besides the increased coercivity, Barkhausen jumps with 5 emu/g steps in magnetization are observed due to magnetization reversal or depinning of domains. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Methanol-tolerant Pt-Pd alloy catalysts supported on to carbon with varying Pt:Pd atomic ratios of 1:1, 2:1 and 3:1 are prepared by a novel wet-chemical method and characterized using powder XRD, XPS, FESEM, EDAX and TEM techniques. The optimum atomic weight ratio for Pt to Pd in the carbon-supported alloy catalyst as established by linear-sweep voltammetry (LSV) and cell polarization studies is found to be 2:1. A direct methanol fuel cell (DMFC) employing carbon-supported Pt-Pd (2:1) alloy (Pt-Pd/C) catalyst as the cathode catalyst delivers a peak-power density of 115 mW/cm(2) at 70 degrees C as compared to peak-power density of 60 mW/cm(2) obtained with the DMFC employing carbon-supported Pt (Pt/C) catalyst operating under similar conditions. In the literature, DMFCs operating with Pt-TiO2 (2:1)/C and Pt-Au (2:1)/C methanol-tolerant cathodes are reported to exhibit maximum ORR activity among the group of these methanol-tolerant cathodes with varying catalysts compositions. Accordingly, the present study also provides an effective route to design methanol-tolerant-oxygen-reduction catalysts for DMFCs. (C) 2011 The Electrochemical Society. DOI: 10.1149/1.3596542] All rights reserved.
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming. Countries and global companies are now engaged in understanding systematic ways of achieving well defined emission targets. In fact, carbon credits have become significant and strategic instruments of finance for countries and global companies. In this paper, we formulate and suggest a solution to the carbon allocation problem, which involves determining a cost minimizing allocation of carbon credits among different emitting agents. We address this challenge in the context of a global company which is faced with the challenge of determining an allocation of carbon credit caps among its divisions in a cost effective way. The problem is formulated as a reverse auction problem where the company plays the role of a buyer or carbon planning authority and the different divisions within the company are the emitting agents that specify cost curves for carbon credit reductions. Two natural variants of the problem: (a) with unlimited budget and (b) with limited budget are considered. Suitable assumptions are made on the cost curves and in each of the two cases we show that the resulting problem formulation is a knapsack problem that can be solved optimally using a greedy heuristic. The solution of the allocation problem provides critical decision support to global companies engaged seriously in green programs.
Resumo:
Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.
Resumo:
Commercially important flavor esters of isoamyl alcohol, catalyzed by crude hog pancreas lipase (HPL), were synthesized under solvent-free conditions and in supercritical carbon dioxide. The esters synthesized were isoamyl acetate, isoamyl propionate, isoamyl butyrate, and isoamyl octanoate. Very low yields (3-4%) of isoamyl acetate were obtained, but high yields for the other three esters were obtained under both supercritical and solvent-free conditions. The yields of esters of the even-carbon acids, isoamyl acetate, butyrate, and octanoate, increased with increasing chain length, whereas the yield of isoamyl propionate was higher than that of isoamyl butyrate. The optimum temperature of the reaction was higher under supercritical conditions (45 degreesC) than under solvent-free conditions (35-40 degreesC). The effects of other parameters such as alcohol concentration, water concentration, and enzyme loading were investigated. An increase in the water concentration decreased the conversion significantly in supercritical carbon dioxide but not under solvent-free conditions. The optimum ratio of alcohol to acid was dependent on the extent of inhibition by the acid. Although providing a higher apparent yield by being run in a highly concentrated medium, the overall conversion under solvent-free conditions was lower than that under supercritical conditions for similar enzyme concentrations, indicating that the synthesis of esters in supercritical carbon dioxide might be a viable option.
Resumo:
We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.
Resumo:
We report the successful synthesis of crystalline carbon nitride by chemical vapor deposition of certain nitrogen containing organic precursors. The precursor is heated and the vapors enter the hot deposition zone where they are pyrolysed and deposited in the form of thin films over pretreated substrates. The powder x-ray diffraction analysis shows clear peaks corresponding to the carbon nitride crystals of tetragonal form in addition to a broad hump corresponding to the amorphous nitrogenated carbon. The crystallites size is similar to300Angstrom and the volume fraction of the crystallites is about similar to7%. The optimum conditions of preparation are found out. The Infrared spectra of these samples also suggest the formation of Carbon Nitride crystals. The analysis reconfirms that the material contains crystallites of Carbon Nitride embedded in an amorphous matrix of nitrogenated carbon. Further the material is characterized by C,H,N elemental analysis, EDX and Raman spectra. Since all the above analyses probe the bulk material, the background amorphous matrix in this case, expecting a clear evidence of nanometer sized crystallites from these tests are unlikely. Attempts are being made to increase the yield of these carbon nitride crystallites.
Resumo:
We synthesize vertically aligned arrays of carbon nanotubes (CNTs) in a chemical vapor deposition system with floating catalyst, using different concentrations of hydrogen in the gas feedstock. We report the effect of different hydrogen concentrations on the microstructure and mechanical properties of the resulting material. We show that a lower hydrogen concentration during synthesis results in the growth of stiffer CNT arrays with higher average bulk density. A lower hydrogen concentration also leads to the synthesis of CNT arrays that can reach higher peak stress at maximum compressive strain, and dissipate a larger amount of energy during compression. The individual CNTs in the arrays synthesized with a lower hydrogen concentration have, on average, larger outer diameters (associated with the growth of CNTs with a larger number of walls), but present a less uniform diameter distribution. The overall heights of the arrays and their strain recovery after compression have been found to be independent of the hydrogen concentration during growth. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We have shown that the general theories of metals and semiconductors can be employed to understand the diameter and voltage dependency of current through metallic and semiconducting carbon nanotubes, respectively. The current through a semiconducting multiwalled carbon nanotube (MWCNT) is associated with the energy gap that is different for different shells. The contribution of the outermost shell is larger as compared to the inner shells. The general theories can also explain the diameter dependency of maximum current through nanotubes. We have also compared the current carrying ability of a MWCNT and an array of the same diameter of single wall carbon nanotubes (SWCNTs) and found that MWCNTs are better suited and deserve further investigation for possible applications as interconnects.
Resumo:
Azophenol complexes of formulation [(η6-p-cymene)RuCl(Ln)] (1–6, n=1–6) were prepared by two synthetic methods involving either an oxygen insertion to the Ru---C bond in cycloruthenated precursors forming complexes 1 and 2 or from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with azophenol ligands (HL3–HL6) in the presence of sodium carbonate in CH2Cl2. The molecular structure of the 1-(phenylazo)-2-naphthol complex has been determined by X-ray crystallography. The complex has a η6-p-cymene group, a chloride and a bidentate N,O-donor azophenol ligand. The complexes have been characterized from NMR spectral data. The catalytic activity of the complexes has been studied for the conversion of acetophenone to the corresponding alcohol in the presence of KOH and isopropanol. Complexes 4 and 6 having a methoxy group attached to the ortho-position of the phenylazo moiety and 2 with a methyl group in the meta-position of the phenolic moiety show high percentage conversion (>84%).
Resumo:
A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized single-walled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.
Resumo:
The equilibrium solubilities of dihydroxy benzene isomers (resorcinol and pyrocatechol) and its mixture were experimentally determined at different temperatures (308, 318, 328, and 338 K) in the pressure range of 9.8-16.2 MPa. In the ternary system, the solubilities of pyrocatechol increased while the solubilities of resorcinol decreased relative to their binary solubilities. A new association model was developed based on the concept of formation of solvate complex molecules to correlate the solubility of the solid for mixed solids in supercritical carbon dioxide (SCCO(2)). The model equation relates the solubility of solute in terms of the cosolute composition, temperature, pressure and density of SCCO(2). The proposed model correlated the solubilities of sixteen solid systems taken from the literature and current experimental data with an average absolute relative deviation (AARD) of around 4%. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
1. During the fermentation of water-logged soil containing added substances with different carbon-nitrogen ratios, the reaction first turns slightly acid, but soon returns to the original hydrogen-ion concentration (pH 7·6). 2. The quantities of ammonia present in the medium increase up to a point, after which there is steady decrease. 3. There is nitrification only in the case of substances with narrow C/N ratios. The production of nitrate generally commences only after about a month, when the vigour of the initial fermentation has subsided and fairly large quantities of ammonia have accumulated in the medium. 4. The extent of mineralisation of nitrogen is determined chiefly by the C/N ratio, though in the cases of substances like mahua and lantana the presence of other constituents may also influence the processes. The quantities of mineralised nitrogen present in the soil system generally tend to decrease after about two months.