234 resultados para BLIND SOURCE SEPARATION (BSS)
Resumo:
This paper addresses the problem of localizing the sources of contaminants spread in the environment, and mapping the boundary of the affected region using an innovative swarm intelligence based technique. Unlike most work in this area the algorithm is capable of localizing multiple sources simultaneously while also mapping the boundary of the contaminant spread. At the same time the algorithm is suitable for implementation using a mobile robotic sensor network. Two types of agents, called the source localization agents (or S-agents) and boundary mapping agents (or B-agents) are used for this purpose. The paper uses the basic glowworm swarm optimization (GSO) algorithm, which has been used only for multiple signal source localization, and modifies it considerably to make it suitable for both these tasks. This requires the definition of new behaviour patterns for the agents based on their terminal performance as well as interactions between them that helps the swarm to split into subgroups easily and identify contaminant sources as well as spread along the boundary to map its full length. Simulations results are given to demonstrate the efficacy of the algorithm.
Resumo:
Voltage source inverters are an integral part of renewable power sources and smart grid systems. Computationally efficient and fairly accurate models for the voltage source inverter are required to carry out extensive simulation studies on complex power networks. Accuracy requires that the effect of dead-time be incorporated in the inverter model. The dead-time is essentially a short delay introduced between the gating pulses to the complementary switches in an inverter leg for the safety of power devices. As the modern voltage source inverters switch at fairly high frequencies, the dead-time significantly influences the output fundamental voltage. Dead-time also causes low-frequency harmonic distortion and is hence important from a power quality perspective. This paper studies the dead-time effect in a synchronous dq reference frame, since dynamic studies and controller design are typically carried out in this frame of reference. For the sake of computational efficiency, average models are derived, incorporating the dead-time effect, in both RYB and dq reference frames. The average models are shown to consume less computation time than their corresponding switching models, the accuracies of the models being comparable. The proposed average synchronous reference frame model, including effect of dead-time, is validated through experimental results.
Resumo:
Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-A -vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe-mineral interaction are discussed.
Resumo:
Single-stranded DNA (ss-DNA) oligomers (dA(20), d(C(3)TA(2))(3)C-3] or dT(20)) are able to disperse single-walled carbon nanotubes (SWNTs) in water at pH 7 through non-covalent wrapping on the nanotube surface. At lower pH, an alteration of the DNA secondary structure leads to precipitation of the SWNTs from the dispersion. The structural change of dA(20) takes place from the single-stranded to the A-motif form at pH 3.5 while in case of d(C(3)TA(2))(3)C-3] the change occurs from the single-stranded to the i-motif form at pH 5. Due to this structural change, the DNA is no longer able to bind the nanotube and hence the SWNT precipitates from its well-dispersed state. However, this could be reversed on restoring the pH to 7, where the DNA again relaxes in the single-stranded form. In this way the dispersion and precipitation process could be repeated over and over again. Variable temperature UV-Vis-NIR and CD spectroscopy studies showed that the DNA-SWNT complexes were thermally stable even at similar to 90 degrees C at pH 7. Broadband NIR laser (1064 nm) irradiation also demonstrated the stability of the DNA-SWNT complex against local heating introduced through excitation of the carbon nanotubes. Electrophoretic mobility shift assay confirmed the formation of a stable DNA-SWNT complex at pH 7 and also the generation of DNA secondary structures (A/i-motif) upon acidification. The interactions of ss-DNA with SWNTs cause debundling of the nanotubes from its assembly. Selective affinity of the semiconducting SWNTs towards DNA than the metallic ones enables separation of the two as evident from spectroscopic as well as electrical conductivity studies.
Resumo:
Bacillus subtilis was used to demonstrate microbially induced selective flocculation to separate kaolinite and hematite. In neutral pH range of 7 - 8, 90 - 95% of hematite was selectively flocculated whereas 80 - 85% of kaolinite was dispersed using hematite - grown cells. Hematite-grown cells exhibited significant adsorption onto hematite than onto kaolinite, compared to unadapted cells. Kaolinite grown Bacillus subtilis secreted significant amounts of mineral specific proteins which conferred surface hydrophobicity whereas hematite-grown cells secreted more polysaccharides rendering hematite hydrophilic. Bacterial extracellular protein (EP) was isolated and the protein profiles of bacteria grown in the absence and presence of minerals were established.
Resumo:
A series of spectral analyses of surface waves (SASW) tests were conducted on a cement concrete pavement by dropping steel balls of four different values of diameter (D) varying between 25.4 and 76.2 mm. These tests were performed (1) by using different combinations of source to nearest receiver distance (S) and receiver spacing (X), and (2) for two different heights (H) of fall, namely, 0.25 and 0.50 m. The values of the maximum wavelength (lambda(max)) and minimum wavelength (lambda(min)) associated with the combined dispersion curve, corresponding to a particular combination of D and H, were noted to increase almost linearly with an increase in the magnitude of the input source energy (E). A continuous increase in strength and duration of the signals was noted to occur with an increase in the magnitude of D. Based on statistical analysis, two regression equations have been proposed to determine lambda(max) and lambda(min) for different values of source energy. It is concluded that the SASW technique is capable of producing nearly a unique dispersion curve irrespective of (1) diameters and heights of fall of the dropping masses used for producing the vibration, and (2) the spacing between different receivers. The results presented in this paper can be used to provide guidelines for deciding about the input source energy based on the required exploration zone of the pavement. (C) 2014 American Society of Civil Engineers.
Resumo:
Shock-Boundary Layer Interaction (SBLI) often occurs in supersonic/hypersonic flow fields. Especially when accompanied by separation (termed strong interaction), the SBLI phenomena largely affect the performance of the systems where they occur, such as scramjet intakes, thus often demanding the control of the interaction. Experiments on the strong interaction between impinging shock wave and boundary layer on a flat plate at Mach 5.96 are carried out in IISc hypersonic shock tunnel HST-2. The experiments are performed at moderate flow total enthalpy of 1.3 MJ/kg and freestream Reynolds number of 4 million/m. The strong shock generated by a wedge (or shock generator) of large angle 30.96 degrees to the freestream is made to impinge on the flat plate at 95 mm (inviscid estimate) from the leading edge, due to which a large separation bubble of length (75 mm) comparable to the distance of shock impingement from the leading edge is generated. The experimental simulation of such large separation bubble with separation occurring close to the leading edge, and its control using boundary layer bleed (suction and tangential blowing) at the location of separation, are demonstrated within the short test time of the shock tunnel (similar to 600 mu s) from time resolved schlieren flow visualizations and surface pressure measurements. By means of suction - with mass flow rate one order less than the mass flow defect in boundary layer - a reduction in separation length by 13.33% was observed. By the injection of an array of (nearly) tangential jets in the direction of mainstream (from the bottom of the plate) at the location of separation - with momentum flow rate one order less than the boundary layer momentum flow defect - 20% reduction in separation length was observed, although the flow field was apparently unsteady. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
We present detailed results from a molecular dynamics (MD) simulation of phase-separation kinetics in polymer mixtures. Our MD simulations naturally incorporate hydrodynamic effects. We find that polymeric phase separation (with dynamically symmetric components) is in the same universality class as segregation of simple fluids: the degree of polymerization only slows down the segregation kinetics. For d = 2 polymeric fluids, the domain growth law is L(t) similar to t(phi) with phi showing a crossover from 1/3 -> 1/2 -> 2/3. For d = 3 polymeric fluids, we see the crossover phi = 1/3 -> 1. Our MD simulations do not yet access the inertial hydrodynamic regime (with L similar to t(2/3)) of phase separation in 3-d fluids. (C) 2014 AIP Publishing LLC.
Resumo:
As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6 h daily/3 d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus amygdala cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased, fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.
Resumo:
In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.
Resumo:
In this paper we present a massively parallel open source solver for Richards equation, named the RichardsFOAM solver. This solver has been developed in the framework of the open source generalist computational fluid dynamics tool box OpenFOAM (R) and is capable to deal with large scale problems in both space and time. The source code for RichardsFOAM may be downloaded from the CPC program library website. It exhibits good parallel performances (up to similar to 90% parallel efficiency with 1024 processors both in strong and weak scaling), and the conditions required for obtaining such performances are analysed and discussed. These performances enable the mechanistic modelling of water fluxes at the scale of experimental watersheds (up to few square kilometres of surface area), and on time scales of decades to a century. Such a solver can be useful in various applications, such as environmental engineering for long term transport of pollutants in soils, water engineering for assessing the impact of land settlement on water resources, or in the study of weathering processes on the watersheds. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In epitaxially grown alloy thin films, spinodal decomposition may be promoted or suppressed depending on the sign of the epitaxial strain. We study this asymmetry by extending Cahn's linear theory of spinodal decomposition to systems with a composition dependent lattice parameter and modulus (represented by Vegard's law coefficients, GRAPHICS] and y, respectively), and an imposed (epitaxial) strain (e). We show analytically (and confirm using simulations) that the asymmetric effect of epitaxial strains arises only in elastically inhomogeneous systems. Specifically, we find good agreement between analytical and simulation results for the wave number GRAPHICS] of the fastest growing composition fluctuation. The asymmetric effect due to epitaxial strain also extends to microstructure formation: our simulations show islands of elastically softer (harder) phase with (without) a favourable imposed strain. We discuss the implications of these results to GeSi thin films on Si and Ge substrates, as well as InGaAs films on GaAs substrates.
Resumo:
Inverter dead-time, which is meant to prevent shoot-through fault, causes harmonic distortion and change in the fundamental voltage in the inverter output. Typical dead-time compensation schemes ensure that the amplitude of the fundamental output current is as desired, and also improve the current waveform quality significantly. However, even with compensation, the motor line current waveform is observed to be distorted close to the current zero-crossings. The IGBT switching transition times being significantly longer at low currents than at high currents is an important reason for this zero-crossover distortion. Hence, this paper proposes an improved dead-time compensation scheme, which makes use of the measured IGBT switching transition times at low currents. Measured line current waveforms in a 2.2 kW induction motor drive with the proposed compensation scheme are compared against those with the conventional dead-time compensation scheme and without dead-time compensation. The experimental results on the motor drive clearly demonstrate the improvement in the line current waveform quality with the proposed method.
Resumo:
A template-free triply interlocked Pd-6 cage (2) was synthesized by two-component self-assembly of cis-blocked 90 degrees acceptor cis-(tmen)Pd(NO3)(2) (M) and 1,3,5-tris((E)-2-(pyridin-3-yl)vinyl)benzene (L). Assembly 2 was characterized by H-1 NMR and ESI-MS, and the structure was confirmed by X-ray crystallography, which revealed a parallel conformation of the olefin double bonds belonging to the adjacent cages in the solid state at a distance of 3.656 angstrom, thereby indicating the feasibility of 2+2] photochemical reaction. Two adjacent interlocked cages were covalently married together by intermolecular 2+2] cycloaddition in a single crystal-to-single crystal fashion upon exposure to sunlight/UV irradiation. Most surprisingly, the covalently married pair was easily separated thermally in aqueous medium under mild reaction conditions.