333 resultados para vapor transport equilibration (VTE)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decentralized emission inventories are prepared for road transport sector of India in order to design and implement suitable technologies and policies for appropriate mitigation measures. Globalization and liberalization policies of the government in 90's have increased the number of road vehicles nearly 92.6% from 1980–1981 to 2003–2004. These vehicles mainly consume non-renewable fossil fuels, and are a major contributor of green house gases, particularly CO2 emission. This paper focuses on the statewise road transport emissions (CO2, CH4, CO, NOx, N2O, SO2, PM and HC), using region specific mass emission factors for each type of vehicles. The country level emissions (CO2, CH4, CO, NOx, N2O, SO2 and NMVOC) are calculated for railways, shipping and airway, based on fuel types. In India, transport sector emits an estimated 258.10 Tg of CO2, of which 94.5% was contributed by road transport (2003–2004). Among all the states and Union Territories, Maharashtra's contribution is the largest, 28.85 Tg (11.8%) of CO2, followed by Tamil Nadu 26.41 Tg (10.8%), Gujarat 23.31 Tg (9.6%), Uttar Pradesh 17.42 Tg (7.1%), Rajasthan 15.17 Tg (6.22%) and, Karnataka 15.09 Tg (6.19%). These six states account for 51.8% of the CO2 emissions from road transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN films were grown on c-plane sapphire by plasma-assisted molecular beam epitaxy (PAMBE). The effect of N/Ga flux ratio on structural, morphological, and optical properties was studied. The dislocation density found to increase with increasing the N/Ga ratio. The surface morphology of the films as seen by scanning electron microscopy shows pits on the surface and found that the pit density on the surface increases with N/Ga ratio. The room temperature photoluminescence study reveals the shift in band-edge emission toward the lower energy with increase in N/Ga ratio. This is believed to arise from the reduction in compressive stress in the films as is evidenced by room temperature Raman study. The transport studied on the Pt/GaN Schottky diodes showed a significant increase in leakage current with an increase in N/Ga ratio and was found to be caused by the increase in pit density as well as increase in dislocation density in the GaN films. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634116]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were fabricated on silicon nitride/Si (111) substrate by droplet epitaxy. Single-crystalline structure of InN QDs was verified by transmission electron microscopy, and the chemical bonding configurations of InN QDs were examined by x-ray photoelectron spectroscopy. Photoluminescence measurement shows a slight blue shift compared to the bulk InN, arising from size dependent quantum confinement effect. The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of InN QDs were studied in a metal-semiconductor-metal configuration in the temperature range of 80-300K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651762]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vapor pressure of pure liquid indium, and the sum of pressures of (In) and (In2O) species over the condensed phase mixture {In} + , contained in a silica vessel, have been measured by Knudsen effusion and Langmuir free vaporization methods in the temperatue range 600 to 950°C. Mass spectrometric studies reported in the literature show that (In) and (In2O) are the important species in the vapor phase over the {In} + ; mixture. The vapor pressure of (In2O) corresponding to the reaction, deduced from the present measurements is given by the equation, The “apparent evaporation coefficient” for the condensed phase mixture is approximately 0.8. The energy for the dissociation (In2O) molecule into atoms calculated from the above equation is D°0 = 180.0 (± 1.0) kcal mol−1.