218 resultados para stocking rate
Resumo:
We study the diversity order vs rate of an additive white Gaussian noise (AWGN) channel in the whole capacity region. We show that for discrete input as well as for continuous input, Gallager's upper bounds on error probability have exponential diversity in low and high rate region but only subexponential in the mid-rate region. For the best available lower bounds and for the practical codes one observes exponential diversity throughout the capacity region. However we also show that performance of practical codes is close to Gallager's upper bounds and the mid-rate subexponential diversity has a bearing on the performance of the practical codes. Finally we show that the upper bounds with Gaussian input provide good approximation throughout the capacity region even for finite constellation.
Achievable rate region of gaussian broadcast channel with finite input alphabet and quantized output
Resumo:
In this paper, we study the achievable rate region of two-user Gaussian broadcast channel (GBC) when the messages to be transmitted to both the users take values from finite signal sets and the received signal is quantized at both the users. We refer to this channel as quantized broadcast channel (QBC). We first observe that the capacity region defined for a GBC does not carry over as such to QBC. Also, we show that the optimal decoding scheme for GBC (i.e., high SNR user doing successive decoding and low SNR user decoding its message alone) is not optimal for QBC. We then propose an achievable rate region for QBC based on two different schemes. We present achievable rate region results for the case of uniform quantization at the receivers. We find that rotation of one of the user's input alphabet with respect to the other user's alphabet marginally enlarges the achievable rate region of QBC when almost equal powers are allotted to both the users.
Resumo:
We consider the problem of characterizing the minimum average delay, or equivalently the minimum average queue length, of message symbols randomly arriving to the transmitter queue of a point-to-point link which dynamically selects a (n, k) block code from a given collection. The system is modeled by a discrete time queue with an IID batch arrival process and batch service. We obtain a lower bound on the minimum average queue length, which is the optimal value for a linear program, using only the mean (λ) and variance (σ2) of the batch arrivals. For a finite collection of (n, k) codes the minimum achievable average queue length is shown to be Θ(1/ε) as ε ↓ 0 where ε is the difference between the maximum code rate and λ. We obtain a sufficient condition for code rate selection policies to achieve this optimal growth rate. A simple family of policies that use only one block code each as well as two other heuristic policies are shown to be weakly optimal in the sense of achieving the 1/ε growth rate. An appropriate selection from the family of policies that use only one block code each is also shown to achieve the optimal coefficient σ2/2 of the 1/ε growth rate. We compare the performance of the heuristic policies with the minimum achievable average queue length and the lower bound numerically. For a countable collection of (n, k) codes, the optimal average queue length is shown to be Ω(1/ε). We illustrate the selectivity among policies of the growth rate optimality criterion for both finite and countable collections of (n, k) block codes.
Resumo:
In this Letter, we present a non-contact method of controlling and monitoring photomechanical actuation in carbon nanotubes (CNT) by exposing it to ultra-violet radiation at different pulse rates (10 to 200 Hz). This is accomplished by imparting a reversible photo induced strain (5-330 mu epsilon) on CNT coated fibre Bragg gratings; CNT undergoes an internal reversible structural change due to cyclic photon absorption that leads to the development of mechanical strain, which in turn allows reversible switching of the Bragg wavelength. The results also reveal an interesting pulse rate dependent rise and fall times of photomechanical actuation in CNT. (C) 2014 AIP Publishing LLC.
Resumo:
A porous layered composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) is prepared by reverse microemulsion method employing a soft polymer template and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The product samples possess mesoporosity with broadly distributed pores of about 30 nm diameters. There is a decrease in pore volume as well as in surface area by increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity values of the samples prepared at 800 and 900 degrees C are about 250 mAh g(-1) at a specific current of 40 mA g(-1) with an excellent cycling stability. A value of 225 mAh g(-1) is obtained at the end of 30 charge-discharge cycles. Both these composite samples possess high rate capability, but the 800 degrees C sample is marginally superior to the 900 degrees C sample. A discharge capacity of 100 mAh g(-1) is obtained at a specific current of 1000 mA g(-1). The high rate capability is attributed to porous nature of the composite samples. (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
Polypyrrole (PPY) is grown on reduced graphene oxide (RGO) and the composite is studied as a catalyst for O-2 electrode in Li-O-2 cells. PPY is uniformly distributed on the two dimensional RGO layers. Li-O-2 cells assembled in a non-aqueous electrolyte using RGO-PPY catalyst exhibit an initial discharge capacity as high as 3358 mAh g(-1) (3.94 mAh cm(-2)) at a current density of 0.3 mA cm(-2). The voltage gap between the charge and discharge curves is less for Li-O-2(RGO-PPY) cell in comparison with Li-O-2(RGO) cell. The Li-O-2(RGO-PPY) cell delivers a discharge capacity of 550 mAh g(-1) (0.43 mAh cm(-2)) at a current density of 1.0 mA cm(-2). The results suggest that RGO-PPY is a promising catalyst of O-2 electrode for high rate rechargeable Li-O-2 cells. (C) 2014 The Electrochemical Society. All rights reserved.
Resumo:
This study considers linear filtering methods for minimising the end-to-end average distortion of a fixed-rate source quantisation system. For the source encoder, both scalar and vector quantisation are considered. The codebook index output by the encoder is sent over a noisy discrete memoryless channel whose statistics could be unknown at the transmitter. At the receiver, the code vector corresponding to the received index is passed through a linear receive filter, whose output is an estimate of the source instantiation. Under this setup, an approximate expression for the average weighted mean-square error (WMSE) between the source instantiation and the reconstructed vector at the receiver is derived using high-resolution quantisation theory. Also, a closed-form expression for the linear receive filter that minimises the approximate average WMSE is derived. The generality of framework developed is further demonstrated by theoretically analysing the performance of other adaptation techniques that can be employed when the channel statistics are available at the transmitter also, such as joint transmit-receive linear filtering and codebook scaling. Monte Carlo simulation results validate the theoretical expressions, and illustrate the improvement in the average distortion that can be obtained using linear filtering techniques.
Resumo:
HfO2 thin films deposited on Si substrate using electron beam evaporation, are evaluated for back-gated graphene transistors. The amount of O-2 flow rate, during vaporation is optimized for 35 nm thick HfO2 films, to achieve the best optical, chemical and electrical properties. It has been observed that with increasing oxygen flow rate, thickness of the films increased and refractive index decreased due to increase in porosity resulting from the scattering of the evaporant. The films deposited at low O-2 flow rates (1 and 3 SCCM) show better optical and compositional properties. The effects of post-deposition annealing and post-metallization annealing in forming gas ambience (FGA) on the optical and electrical properties of the films have been analyzed. The film deposited at 3 SCCM O-2 flow rate shows the best properties as measured on MOS capacitors. To evaluate the performance of device properties, back-gated bilayer graphene transistors on HfO2 films deposited at two O-2 flow rates of 3 and 20 SCCM have been fabricated and characterized. The transistor with HfO2 film deposited at 3 SCCM O-2 flow rate shows better electrical properties consistent with the observations on MOS capacitor structures. This suggests that an optimum oxygen pressure is necessary to get good quality films for high performance devices.
Resumo:
It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport.
Resumo:
Na-ion batteries are currently the focus of significant research activity due to the relative abundance of sodium and its consequent cost advantages. Recently, the pyrophosphate family of cathodes has attracted considerable attention, particularly Li2FeP2O7 related to its high operating voltage and enhanced safety properties; in addition the sodium-based pyrophosphates Na2FeP2O7 and Na2MnP2O7 are also generating interest. Herein, we present defect chemistry and ion migration results, determined via atomistic simulation techniques, for Na2MP2O7 (where M = Fe, Mn) as well as findings for Li2FeP2O7 for direct comparison. Within the pyrophosphate framework the most favourable intrinsic defect type is found to be the antisite defect, in which alkali-cations (Na/Li) and M ions exchange positions. Low activation energies are found for long-range diffusion in all crystallographic directions in Na2MP2O7 suggesting three-dimensional (3D) Na-ion diffusion. In contrast Li2FeP2O7 supports 2D Li-ion diffusion. The 2D or 3D nature of the alkali-ion migration pathways within these pyrophosphate materials means that antisite defects are much less likely to impede their transport properties, and hence important for high rate performance.
Resumo:
The standard approach to signal reconstruction in frequency-domain optical-coherence tomography (FDOCT) is to apply the inverse Fourier transform to the measurements. This technique offers limited resolution (due to Heisenberg's uncertainty principle). We propose a new super-resolution reconstruction method based on a parametric representation. We consider multilayer specimens, wherein each layer has a constant refractive index and show that the backscattered signal from such a specimen fits accurately in to the framework of finite-rate-of-innovation (FRI) signal model and is represented by a finite number of free parameters. We deploy the high-resolution Prony method and show that high-quality, super-resolved reconstruction is possible with fewer measurements (about one-fourth of the number required for the standard Fourier technique). To further improve robustness to noise in practical scenarios, we take advantage of an iterated singular-value decomposition algorithm (Cadzow denoiser). We present results of Monte Carlo analyses, and assess statistical efficiency of the reconstruction techniques by comparing their performance against the Cramer-Rao bound. Reconstruction results on experimental data obtained from technical as well as biological specimens show a distinct improvement in resolution and signal-to-reconstruction noise offered by the proposed method in comparison with the standard approach.
Resumo:
This article reports on analysis of fracture processes in reinforced concrete (RC) beams with acoustic emission (AE) technique. An emphasis was given to study the effect of loading rate on variation in AE based b-values with the development of cracks in RC structures. RC beams of length 3.2 m were tested under load control at a rate of 4 kN/s, 5 kN/s and 6 kN/s and the b-value analysis available in seismology was used to study the fracture process in RC structures. Moreover, the b-value is related to the strain in steel to assess the damage state. It is observed that when the loading rate is higher, quick cracking development lead to rapid fluctuations and drops in the b-values. Also it is observed that concrete behaves relatively more brittle at higher loading rates (or at higher strain rates). The average b-values are lower as a few but larger amplitudes of AE events occur in contrast to more number of low amplitude AE events occur at low loading rates (or at low strain rates). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A porous layered composite of Li2MnO3 and LiMn0.35Ni0.55Fe0.1O2 (composition:Li1.2Mn0.54Ni0.22Fe0.04O2) is prepared by inverse microemulsion method and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The X-ray diffraction, scanning electron microscopy, and transmission electron microscopy studies suggested that well crystalline submicronsized particles are obtained. The product samples possess mesoporosity with broadly distributed pores around 10 similar to 50 nm diameter. Pore volume and surface area decrease by increasing the temperature of preparation. However, the electrochemical activity of the composite samples increases with an increase in temperature. The discharge capacity values of the samples prepared at 900 degrees C are about 186 mAh g(-1) at a specific current of 25 mA g(-1) with an excellent cycling stability. The composite sample also possesses high rate capability. The high rate capability is attributed to the porous nature of the material. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We address the problem of parameter estimation of an ellipse from a limited number of samples. We develop a new approach for solving the ellipse fitting problem by showing that the x and y coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals. Uniform samples of x and y coordinate functions of the ellipse are modeled as a sum of weighted complex exponentials, for which we propose an efficient annihilating filter technique to estimate the ellipse parameters from the samples. The FRI framework allows for estimating the ellipse parameters reliably from partial or incomplete measurements even in the presence of noise. The efficiency and robustness of the proposed method is compared with state-of-art direct method. The experimental results show that the estimated parameters have lesser bias compared with the direct method and the estimation error is reduced by 5-10 dB relative to the direct method.