227 resultados para standard batch algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type Ia supernovae, sparked off by exploding white dwarfs of mass close to the Chandrasekhar limit, play the key role in understanding the expansion rate of the Universe. However, recent observations of several peculiar type Ia supernovae argue for its progenitor mass to be significantly super-Chandrasekhar. We show that strongly magnetized white dwarfs not only can violate the Chandrasekhar mass limit significantly, but exhibit a different mass limit. We establish from a foundational level that the generic mass limit of white dwarfs is 2.58 solar mass. This explains the origin of overluminous peculiar type Ia supernovae. Our finding further argues for a possible second standard candle, which has many far reaching implications, including a possible reconsideration of the expansion history of the Universe. DOI: 10.1103/PhysRevLett.110.071102

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers sequential hypothesis testing in a decentralized framework. We start with two simple decentralized sequential hypothesis testing algorithms. One of which is later proved to be asymptotically Bayes optimal. We also consider composite versions of decentralized sequential hypothesis testing. A novel nonparametric version for decentralized sequential hypothesis testing using universal source coding theory is developed. Finally we design a simple decentralized multihypothesis sequential detection algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-complexity near-optimal detection of signals in MIMO systems with large number (tens) of antennas is getting increased attention. In this paper, first, we propose a variant of Markov chain Monte Carlo (MCMC) algorithm which i) alleviates the stalling problem encountered in conventional MCMC algorithm at high SNRs, and ii) achieves near-optimal performance for large number of antennas (e.g., 16×16, 32×32, 64×64 MIMO) with 4-QAM. We call this proposed algorithm as randomized MCMC (R-MCMC) algorithm. Second, we propose an other algorithm based on a random selection approach to choose candidate vectors to be tested in a local neighborhood search. This algorithm, which we call as randomized search (RS) algorithm, also achieves near-optimal performance for large number of antennas with 4-QAM. The complexities of the proposed R-MCMC and RS algorithms are quadratic/sub-quadratic in number of transmit antennas, which are attractive for detection in large-MIMO systems. We also propose message passing aided R-MCMC and RS algorithms, which are shown to perform well for higher-order QAM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a comparative study is carried using three nature-inspired algorithms namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS) on clustering problem. Cuckoo search is used with levy flight. The heavy-tail property of levy flight is exploited here. These algorithms are used on three standard benchmark datasets and one real-time multi-spectral satellite dataset. The results are tabulated and analysed using various techniques. Finally we conclude that under the given set of parameters, cuckoo search works efficiently for majority of the dataset and levy flight plays an important role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an open-source, realtime, embedded implementation of a foot-mounted, zero-velocity-update-aided inertial navigation system. The implementation includes both hardware design and software, uses off-the-shelf components and assembly methods, and features a standard USB interface. The software is written in C and can easily be modified to run user implemented algorithms. The hardware design and the software are released under permissive open-source licenses and production files, source code, documentation, and further resources are available at www.openshoe.org. The reproduction cost for a single unit is below $800, with the inertial measurement unit making up the bulk ($700). The form factor of the implementation is small enough for it to be integrated in the sole of a shoe. A performance evaluation of the system shows a position errors for short trajectories (<;100 [m]) of ± 0.2-1% of the traveled distance, depending on the shape of trajectory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future space-based gravity wave (GW) experiments such as the Big Bang Observatory (BBO), with their excellent projected, one sigma angular resolution, will measure the luminosity distance to a large number of GW sources to high precision, and the redshift of the single galaxies in the narrow solid angles towards the sources will provide the redshifts of the gravity wave sources. One sigma BBO beams contain the actual source in only 68% of the cases; the beams that do not contain the source may contain a spurious single galaxy, leading to misidentification. To increase the probability of the source falling within the beam, larger beams have to be considered, decreasing the chances of finding single galaxies in the beams. Saini et al. T.D. Saini, S.K. Sethi, and V. Sahni, Phys. Rev. D 81, 103009 (2010)] argued, largely analytically, that identifying even a small number of GW source galaxies furnishes a rough distance-redshift relation, which could be used to further resolve sources that have multiple objects in the angular beam. In this work we further develop this idea by introducing a self-calibrating iterative scheme which works in conjunction with Monte Carlo simulations to determine the luminosity distance to GW sources with progressively greater accuracy. This iterative scheme allows one to determine the equation of state of dark energy to within an accuracy of a few percent for a gravity wave experiment possessing a beam width an order of magnitude larger than BBO (and therefore having a far poorer angular resolution). This is achieved with no prior information about the nature of dark energy from other data sets such as type Ia supernovae, baryon acoustic oscillations, cosmic microwave background, etc. DOI:10.1103/PhysRevD.87.083001

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of sampling and reconstruction of two-dimensional (2-D) finite-rate-of-innovation (FRI) signals. We propose a three-channel sampling method for efficiently solving the problem. We consider the sampling of a stream of 2-D Dirac impulses and a sum of 2-D unit-step functions. We propose a 2-D causal exponential function as the sampling kernel. By causality in 2-D, we mean that the function has its support restricted to the first quadrant. The advantage of using a multichannel sampling method with causal exponential sampling kernel is that standard annihilating filter or root-finding algorithms are not required. Further, the proposed method has inexpensive hardware implementation and is numerically stable as the number of Dirac impulses increases.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For compressed sensing (CS), we develop a new scheme inspired by data fusion principles. In the proposed fusion based scheme, several CS reconstruction algorithms participate and they are executed in parallel, independently. The final estimate of the underlying sparse signal is derived by fusing the estimates obtained from the participating algorithms. We theoretically analyze this fusion based scheme and derive sufficient conditions for achieving a better reconstruction performance than any participating algorithm. Through simulations, we show that the proposed scheme has two specific advantages: 1) it provides good performance in a low dimensional measurement regime, and 2) it can deal with different statistical natures of the underlying sparse signals. The experimental results on real ECG signals shows that the proposed scheme demands fewer CS measurements for an approximate sparse signal reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opportunistic relay selection in a multiple source-destination (MSD) cooperative system requires quickly allocating to each source-destination (SD) pair a suitable relay based on channel gains. Since the channel knowledge is available only locally at a relay and not globally, efficient relay selection algorithms are needed. For an MSD system, in which the SD pairs communicate in a time-orthogonal manner with the help of decode-and-forward relays, we propose three novel relay selection algorithms, namely, contention-free en masse assignment (CFEA), contention-based en masse assignment (CBEA), and a hybrid algorithm that combines the best features of CFEA and CBEA. En masse assignment exploits the fact that a relay can often aid not one but multiple SD pairs, and, therefore, can be assigned to multiple SD pairs. This drastically reduces the average time required to allocate an SD pair when compared to allocating the SD pairs one by one. We show that the algorithms are much faster than other selection schemes proposed in the literature and yield significantly higher net system throughputs. Interestingly, CFEA is as effective as CBEA over a wider range of system parameters than in single SD pair systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boxicity (cubicity) of a graph G, denoted by box(G) (respectively cub(G)), is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (cubes) in ℝ k . The problem of computing boxicity (cubicity) is known to be inapproximable in polynomial time even for graph classes like bipartite, co-bipartite and split graphs, within an O(n 0.5 − ε ) factor for any ε > 0, unless NP = ZPP. We prove that if a graph G on n vertices has a clique on n − k vertices, then box(G) can be computed in time n22O(k2logk) . Using this fact, various FPT approximation algorithms for boxicity are derived. The parameter used is the vertex (or edge) edit distance of the input graph from certain graph families of bounded boxicity - like interval graphs and planar graphs. Using the same fact, we also derive an O(nloglogn√logn√) factor approximation algorithm for computing boxicity, which, to our knowledge, is the first o(n) factor approximation algorithm for the problem. We also present an FPT approximation algorithm for computing the cubicity of graphs, with vertex cover number as the parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transaction processing is a key constituent of the IT workload of commercial enterprises (e.g., banks, insurance companies). Even today, in many large enterprises, transaction processing is done by legacy "batch" applications, which run offline and process accumulated transactions. Developers acknowledge the presence of multiple loosely coupled pieces of functionality within individual applications. Identifying such pieces of functionality (which we call "services") is desirable for the maintenance and evolution of these legacy applications. This is a hard problem, which enterprises grapple with, and one without satisfactory automated solutions. In this paper, we propose a novel static-analysis-based solution to the problem of identifying services within transaction-processing programs. We provide a formal characterization of services in terms of control-flow and data-flow properties, which is well-suited to the idioms commonly exhibited by business applications. Our technique combines program slicing with the detection of conditional code regions to identify services in accordance with our characterization. A preliminary evaluation, based on a manual analysis of three real business programs, indicates that our approach can be effective in identifying useful services from batch applications.