404 resultados para single molecules
Resumo:
A theoretical solution for the gravitational stresses in single span deep beams using Fourier series has been given. Numerical results for different span to depth ratios are given and these have been compared with the photoelastic results given by Saad and Hendry [1], and the finite difference results of Chow et al. [2,3].
Resumo:
The Raman spectrum of a single crystal of cadmium acetate dihydrate has been recorded for the first time using λ 2537 excitation. Twenty-three lines have been observed out of which ten have been attributed to the internal oscillations of the acetate ion, nine to the lattice modes, two to low-frequency hydrogen bond vibrations. A line at 308 cm.−1 and the continuum 3250–3560 cm.−1 have been assigned to the Cd-O6 and internal vibrations of the water molecules.
Resumo:
A miniature furnace suitable for routine collection of x-ray data up to 1000°C from single crystals on the Hilger and Watts linear diffractometer, without restricting the normally allowed region of reciprocal space on the diffractometer, is described. The crystal is heated primarily by radiation from a surrounding current-heated, stationary platinum coil wound on a silica bracket. The coil is split at its middle to provide a 4 mm gap for crystal mounting and x-irradiation. The crystal, mounted on a standard goniometer head, can be rotated and centred freely, as in the room temperature case. There is no need for any radiation shields or water-cooling arrangement. Investigations up to 1500°C are possible with slight modifications of the furnace.
Resumo:
The out-diffusion of germanium from the core of a photosensitive fiber under elevated temperature is exploited to form a Fabry-Perot filter within a single fiber Bragg grating, by subjecting the diffused region to a single exposure using the standard phase-mask technique. A key aspect of our work is the measurement of the out-diffusion through energy dispersive X-ray analysis. Furthermore, we demonstrate the use of the above single-grating filter for discrimination and simultaneous measurement of strain and temperature. The proposed technique provides a significant advantage over other existing methods that require at least two gratings.
Resumo:
Background: MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results: Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch(13). Conclusion: The systematic framework for understanding structuralvariations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.
Resumo:
Background: MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results: Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch(13). Conclusion: The systematic framework for understanding structural variations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.
Resumo:
The proton magnetic resonance spectra of single crystals of Na2Zn(SO4)2·4H2O have been investigated and the orientations of the water molecules have been determined. Using the heavy atom structure determined by X-rays a system of hydrogen bonds between water and sulphate oxygens has been proposed.
Resumo:
Proton magnetic resonance spectra of single crystals of two Tutton's salts, K2Zn (SO4)2.6H22O and K2Mg (SO4)2.6H2O, have been studied and the orientations of the water molecules in the structure have been determined. Using the heavy-atom structure of (NH4) 2Mgt(SO4)2.6H2O as determined by x-ray diffraction, a system of hydrogen bonds between the water and sulfate oxygens in Tutton's salts has been proposed. It appears that the x-ray structure needs considerable refinement.
Resumo:
A laboratory model of a thermally driven adsorption refrigeration system with activated carbon as the adsorbent and 1,1,1,2-tetrafluoroethane (HFC 134a) as the refrigerant was developed. The single stage compression system has an ensemble of four adsorbers packed with Maxsorb II specimen of activated carbon that provide a near continuous flow which caters to a cooling load of up to 5W in the 5-18 degrees C region. The objective was to utilise the low grade thermal energy to drive a refrigeration system that can be used to cool some critical electronic components. The laboratory model was tested for it performance at various cooling loads with the heat source temperature from 73 to 93 degrees C. The pressure transients during heating and cooling phases were traced. The cyclic steady state and transient performance data are presented. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Atomically resolved scanning tunneling microscopy was conducted on cleaved single crystals of the cubic perovskite Pr0.68Pb0.32MnO3.Several different surface configurations could be resolved including a frequent square arrangement with atomic distances in excellent agreement to the bulk lattice constant of the cubic structure. We also observed stripe formation and a surface reconstruction. The latter is likely related to a polar rare earth-oxygen terminated surface. (C) 2010 American Institute of Physics.
Resumo:
Nanoplate LiFePO4 is synthesized by a polyol route starting from only two reactants, namely, FePO4 and LiOH. The crystalline compound forms by refluxing a tetraethylene glycol solution consisting of FePO4 and LiOH at 335 degrees C without further heating of the reaction product.The nanoplates have average dimensions of 30 nm width and 160 nm length, as measured from transmission electron microscopy micrographs.The surface area of the LiFePO4 sample is 38 m(2) g(-1). Also, the sample is porous with a broadly distributed pore around 50 nm. The electrodes fabricated out of the nanoplate of LiFePO4 exhibit a high electrochemical activity. Discharge capacity values measured are 160 and 100 mAh g(-1) at 0.15C and 3.45C, respectively. A stable capacity of about 155 mAh g(-1) is measured at 0.2C over a 50 charge-discharge cycle. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3425730] All rights reserved.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.