508 resultados para microcosmic optical parameter
Resumo:
The effect of Raman scattering on co-propagation of two short optical pulses is considered. The intra pulse Raman scattering causes the self-frequency shift of each pulse. The effect of the inter pulse Raman scattering is to enhance the frequency shift while the stimulated Raman scattering (SRS) term suppresses (enhances) the frequency shift if the center frequency difference between the optical pulses falls to the right (left) of the Raman gain peak. An expression for the frequency shift as a function of the propagation distance is obtained.
Resumo:
We calculate the kaon B parameter in quenched lattice QCD at beta=6.0 using Wilson fermions at kappa=0.154 and 0.155. We use two kinds of nonlocal (''smeared'') sources for quark propagators to calculate the matrix elements between states of definite momentum. The use of smeared sources yields results with much smaller errors than obtained in previous calculations with Wilson fermions. By combining results for p=(0,0,0) and p=(0,0,1), we show that one can carry out the noperturbative subtraction necessary to remove the dominant lattice artifacts induced by the chiral-symmetry-breaking term in the Wilson action. Our final results are in good agreement with those obtained using staggered fermions. We also present results for B parameters of the DELTAI = 3/2 part of the electromagnetic penguin operators, and preliminary results for B(K) in the presence of two flavors of dynamical quarks.
Resumo:
We have synthesized Dy3+-doped ZnO nanoparticles at room temperature through the sol-gel method. X-ray diffraction and Scanning electron microscopic studies confirm the crystalline nature of the particles. Excitonic absorption of ZnO shows three different bands, and we observe that incorporation of Dy3+ results in the shifting and broadening of the n=1 absorption band of ZnO. Photoluminescence studies done at the excitation wavelength of 335 nm show broad emission containing five different bands. Open-aperture z-scan studies done at 532 nm using 5 ns laser pulses show an optical limiting behavior, which numerically fits to a three-photon type absorption process. The nonlinearity is essentially resonant, as it is found to increase consistently with Dy3+ concentration. This feature makes Dy3+-doped ZnO a flexible optical limiter for potential device applications.
Resumo:
We study the photon-number distribution in squeezed states of a single-mode radiation field. A U(l)-invariant squeezing criterion is compared and contrasted with a more restrictive criterion, with the help of suggestive geometric representations. The U(l) invariance of the photon-number distribution in a squeezed coherent state, with arbitrary complex squeeze and displacement parameters, is explicitly demonstrated. The behavior of the photon-number distribution for a representative value of the displacement and various values of the squeeze parameter is numerically investigated. A new kind of giant oscillation riding as an envelope over more rapid oscillations in this distribution is demonstrated.
Resumo:
An adaptive regularization algorithm that combines elementwise photon absorption and data misfit is proposed to stabilize the non-linear ill-posed inverse problem. The diffuse photon distribution is low near the target compared to the normal region. A Hessian is proposed based on light and tissue interaction, and is estimated using adjoint method by distributing the sources inside the discretized domain. As iteration progresses, the photon absorption near the inhomogeneity becomes high and carries more weightage to the regularization matrix. The domain's interior photon absorption and misfit based adaptive regularization method improves quality of the reconstructed Diffuse Optical Tomographic images.
Resumo:
A novel approach for simultaneous measurement of chirp (any parameter that can induce strain gradient on FBG) and temperature using a single FBG is proposed. Change in reflectivity at central wavelength of FBG reflection & Bragg wavelength shifts induced due to temperature were used for chirp & temperature measurements respectively. Theoretical resolution limit for chirp and temperature using an Optical Spectrum Analyzer (OSA) with 1pm wavelength resolution and >58dB dynamic range are 12.8fm and 1/13 degrees C respectively.
Resumo:
A four and a five-parameter functions are used to analyse and interpret the high and low temperature thermodynamic data and phase equilibria in the Ga-In system.
Resumo:
This paper presents the strong nonlocal scale effect on the flexural wave propagation in a monolayer graphene sheet. The graphene is modeled as an isotropic plate of one atom thick. Nonlocal governing equation of motion is derived and wave propagation analysis is performed using spectral analysis. The present analysis shows that the flexural wave dispersion in graphene obtained by local and nonlocal elasticity theories is quite different. The nonlocal elasticity calculation shows that the wavenumber escapes to infinite at certain frequency and the corresponding wave velocity tends to zero at that frequency indicating localization and stationary behavior. This behavior is captured in the spectrum and dispersion curves. The cut-off frequency of flexural wave not only depend on the axial wavenumber but also on the nonlocal scaling parameter. The effect of axial wavenumber on the wave behavior in graphene is also discussed in the present manuscript. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Exposure with above band gap light and thermal annealing at a temperature near to glass transition temperature, of thermally evaporated amorphous (As2S3)(0.87)Sb-0.13 thin films of 1 mu m thickness, were found to be accompanied by structural effects, which in turn, lead to changes in the optical properties. The optical properties of thin films induced by illumination and annealing were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photo darkening or photo bleaching was observed in the film depending upon the conditions of the light exposure or annealing. These changes of the optical properties are assigned to the change of homopolar bond densities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Diffuse optical tomographic image reconstruction uses advanced numerical models that are computationally costly to be implemented in the real time. The graphics processing units (GPUs) offer desktop massive parallelization that can accelerate these computations. An open-source GPU-accelerated linear algebra library package is used to compute the most intensive matrix-matrix calculations and matrix decompositions that are used in solving the system of linear equations. These open-source functions were integrated into the existing frequency-domain diffuse optical image reconstruction algorithms to evaluate the acceleration capability of the GPUs (NVIDIA Tesla C 1060) with increasing reconstruction problem sizes. These studies indicate that single precision computations are sufficient for diffuse optical tomographic image reconstruction. The acceleration per iteration can be up to 40, using GPUs compared to traditional CPUs in case of three-dimensional reconstruction, where the reconstruction problem is more underdetermined, making the GPUs more attractive in the clinical settings. The current limitation of these GPUs in the available onboard memory (4 GB) that restricts the reconstruction of a large set of optical parameters, more than 13, 377. (C) 2010 Society of Photo-Optical Instrumentation Engineers. DOI: 10.1117/1.3506216]
Resumo:
Two-band extended Hubbard model studies show that the shift in optical gap of the metal-halogen (MX) chain upon embedding in a crystalline environment depends upon alternation in the site-diagonal electron-lattice interaction parameter (epsilon(M)) and the strength of electron-electron interactions at the metal site (U(M)). The equilibrium geometry studies on isolated chains show that the MX chains tend to distort for alternating epsilon(M) and small U(M) values.
Resumo:
Studies on compressibility and shear strength aspects are the concern of many investigators concerned with partly saturated soils. In soil engineering connected with partly saturated soils, there are no approaches connecting soil states and stress conditions. The present investigation is essentially a step in this direction. A generalized state parameter, identified with regard to material states is shown to be related to the compressibility and shear strength. The involved parameters are simple and normally determined in routine investigations. The advantage of this approach is that changes in soil states due to external stress conditions and the associated changes in strength can be examined particularly when different types of soils are involved.
Resumo:
The coefficient of thermochromism of polyaniline solutions has been found to be solvent dependent and the solvent effect is not negligible. Hence, thermochromism of polyaniline solutions cannot be explained solely on the basis of conformational change induced by a change in temperature. Further, comparison of the solvatochromism of polyaniline and polytoluidine shows a higher solvatochromic shift for the former. It implies that the higher energy associated with the exciton peak of polytoluidine is not due to the higher ring torsional angle induced by the higher steric repulsion of the methyl group, as widely accepted, but is due to its less solvatochromic red-shift as compared to polyaniline.
Resumo:
A holographic optical element (HOE) based single-mode hybrid fiber optic interferometer for realizing the zero-order fringe is described. The HOE proposed and used integrates the actions of a beam combiner and a lens, and endows the interferometer with high tolerance for repositioning errors. The proposed method is simple and offers advantages such as the elimination of in situ processing for the hologram.
Resumo:
Tin sulfide (SnS) is a material of interest for use as an absorber in low cost solar cells. Single crystals of SnS were grown by the physical vapor deposition technique. The grown crystals were characterized to evaluate the composition, structure, morphology, electrical and optical properties using appropriate techniques. The composition analysis indicated that the crystals were nearly stoichiometric with Sn-to-S atomic percent ratio of 1.02. Study of their morphology revealed the layered type growth mechanism with low surface roughness. The grown crystals had orthorhombic structure with (0 4 0) orientation. They exhibited an indirect optical band gap of 1.06 eV and direct band gap of 1.21 eV with high absorption coefficient (up to 10(3) cm(-1)) above the fundamental absorption edge. The grown crystals were of p-type with an electrical resistivity of 120 Omega cm and carrier concentration 1.52 x 10(15) cm(-3). Analysis of optical absorption and diffuse reflectance spectra showed the presence of a wide absorption band in the wavelength range 300-1200 nm, which closely matches with a significant part of solar radiation spectrum. The obtained results were discussed to assess the suitability of the SnS crystal for the fabrication of optoelectronic devices. (C) 2011 Elsevier B.V. All rights reserved.