333 resultados para mechanical separation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long-range order, and a homogeneous state with coexistence of superfluidity and antiferromagnetism. Using a variational formalism, we show that the energy density of a hole e(hole)(x) has a minimum at doping x = x(c) that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is, however, found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest-neighbor hopping t-J model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the interaction of a source-sink pair. The main parameters of the problem are source and sink flow rates, the axial and lateral separations of the source and sink, and the angle between the axes of source and sink. Of concern is the percentage of source fluid that enters the sink as a function of these parameters. The experiments have been carried using the source nozzle diameter of 6 mm and the sink pipe diameter of two sizes: 10 mm and 20 mm. The Reynolds numbers of the source jet is about 3200. The main diagnostics are flow visualization using dye, laser induced fluorescence (LIF), particle streak photographs and particle image velocimetry (Ply). To obtain the removal effectiveness (that is percentage of source fluid that is going through the sink pipe), titration method is used. The sink diameter and the angle between source and the sink axes do not influence efficiencies as do the sink flow rate and the lateral separation. Data from experiments have been consolidated so that these results can be used for designing sinks for removal of heat and pollutants. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of the electrical switching studies performed on the bulk Al20GexTe80-x (2.5 less than or equal to x less than or equal to 15) chalcogenide glasses. The well known topological features, mechanical and chemical thresholds are observed. Mechanical threshold is seen at a mean coordination number of atoms, < r > = 2.50 (x = 5) a clear shift rom the mean field value of < r > = 2.4 whereas the chemical threshold is observed at < r > = 2.65 (x = 12.5) as predicted by the chemically ordered covalent network model These experiments are a sequel to similar experiments on Al20AsxTe80-x glasses in which mechanical threshold was seen at < r > = 2.60 and no chemical threshold was observed These results am well understood by a chemical bond picture developed in this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand for cost-effective manufacturing techniques led to the development of near-net-shape processes. Squeeze casting is one such established effort. This process enjoys the combined merits of casting and forging. Squeeze casting imparts soundness comparable to that of wrought products while maintaining isotropic nature. Aluminum alloys and zinc alloys have been successfully processed through squeeze casting, but copper and copper alloys do not seem to have been attempted. Considering the capability of squeeze casting process, it is reasonable to expect properties different from that of conventionally cast copper. This paper presents the details of a systematic investigation wherein optimum process parameters for the squeeze casting of pure copper were established. Microstructure of squeeze-cast copper has been found to be significantly different from that of conventionally cast copper, and the dendrite arm spacing is much smaller. In addition to the room temperature mechanical properties, elevated temperature properties of copper are also appreciably improved by squeeze casting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study reports a two dimensional NMR experiment which separates single quantum spectra of enantiomers from that of a racemic mixture. This is a blend of selective double quantum refocusing, for resolving couplings and chemical shift interactions along two dimensions followed by correlation of the selectively excited protons to the entire coupled spin network. The concept is solely based on the presence of distinct intra methyl dipolar couplings of different enantiomers when dissolved in chiral orienting media. The analysis of single enantiomer spectrum obtained from respective F-2 cross sections yield all the spectral information. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation is used to explore the variation of mechanical properties associated with the dehydration process in sodium saccharin dihydrate. Upon indenting using a Berkovich tip, (011) and (101) faces exhibit explicit mechanical anisotropy that is consistent with the underlying crystal structure and intermolecular interactions. For freshly grown crystals, (011) is stiffer than (101) by 14%, while (101) is harder than (011) by 8%. Being a heavily hydrated system, the measured mechanical responses contain information pertinent to the fluidity associated with lattice water. Indentation on (011) with a sharp cube-corner tip induces a fluid flow; this observation is uncommon in molecular crystals. The crystals effloresce over a period of time with the generation of a more compact crystal structure and consequently increasing H and E.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present report illustrates the phenomenon of phase separation leading to the splitting of solid solution structured Ag-Co nanoparticles into pure Ag and pure Co nanoparticles upon isothermal annealing inside a transmission electron microscope. In bulk, Ag-Co system shows negligible mutual solubility into a single phase solid solution structure upto a very high temperature. The Ag-Co nanoparticle splitting revealed that room temperature, solid solution atomic configuration, between bulk immiscible Ag and Co atoms coexisting in a nano-sized particle, is a kinetically frozen atomic arrangement and not a thermodynamically stable structure. The observed phase separation behavior resulting in particle splitting at high temperatures can be used to produce devices for sensor applications. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the development of ultrafine grained ZrB2-SiC composites using TiSi2 as the sintering aid and spark plasma sintering (SPS) as the processing technique. It was observed that the presence of TiSi2 improved the sinterability of the composites, such that near theoretical densification (99.9%) could be achieved for ZrB2-18 wt.% SiC-5 wt.% TiSi2 composites after SPS at 1600 degrees C for 10 min at 50 MPa. Use of innovative multi stage sintering (MSS) route, which involved holding the samples at lower (intermediate) temperatures for some time before holding at the final temperature, while keeping the net holding time to 10 min, allowed attainment of full densification of ZrB2-18 wt.% SiC-2.5 wt.% TiSi2 at a still lower final temperature of 1500 degrees C at 30 MPa. TEM observations, which revealed the presence of anisotropic ZrB2 grains with faceted grain boundaries and TiSi2 at the intergranular regions, suggested the occurrence of liquid phase sintering in the presence of TiSi2. No additional phase was detected in XRD as well as TEM, which confirmed the absence of any sintering reaction. The as developed composites possessed an excellent combination of Vickers hardness and indentation toughness, both of which increased with increase in TiSi2 content, such that the ZrBi2-18 wt.% SiC-5 wt.% TiSi2 (SPS processed at 1600 degrees C) possessed hardness of similar to 20 GPa and indentation toughness of similar to 5 MPa m(1/2). The use of MSS SPS at 1500 degrees C for ZrBi2-18 wt.% SiC-2.5 wt.% TiSi2 composite resulted in improvement in hardness of up to similar to 27 GPa and attainment of high flexural strength of similar to 455 MPa. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar separation bubbles are thought to be highly non-parallel, and hence global stability studies start from this premise. However, experimentalists have always realized that the flow is more parallel than is commonly believed, for pressure-gradient-induced bubbles, and this is why linear parallel stability theory has been successful in describing their early stages of transition. The present experimental/numerical study re-examines this important issue and finds that the base flow in such a separation bubble becomes nearly parallel due to a strong-interaction process between the separated boundary layer and the outer potential flow. The so-called dead-air region or the region of constant pressure is a simple consequence of this strong interaction. We use triple-deck theory to qualitatively explain these features. Next, the implications of global analysis for the linear stability of separation bubbles are considered. In particular we show that in the initial portion of the bubble, where the flow is nearly parallel, local stability analysis is sufficient to capture the essential physics. It appears that the real utility of the global analysis is perhaps in the rear portion of the bubble, where the flow is highly non-parallel, and where the secondary/nonlinear instability stages are likely to dominate the dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the influence of nickel incorporation on the mechanical properties and the in vitro bioactivity of hydrogenated carbon thin films were investigated in detail. Amorphous hydrogenated carbon (a-C : H) and nickel-incorporated hydrogenated carbon (Ni/a-C : H) thin films were deposited onto the Si substrates by using reactive biased target ion beam deposition technique. The films' chemical composition, surface roughness, microstructure and mechanical properties were investigated by using XPS, AFM, TEM, nanoindentation and nanoscratch test, respectively. XPS results have shown that the film surface is mainly composed of nickel, nickel oxide and nickel hydroxide, whereas at the core is nickel carbide (Ni3C) only. The presence of Ni3C has increased the sp(2) carbon content and as a result, the mechanical hardness of the film was decreased. However, Ni/a-C : H films shows very low friction coefficient with higher scratch-resistance behavior than that of pure a-C : H film. In addition, in vitro bioactivity study has confirmed that it is possible to grow dense bone-like apatite layer on Ni/a-C : H films. Thus, the results have indicated the suitability of the films for bone-related implant coating applications. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten incorporated diamond like carbon (W-DLC) nanocomposite thin films with variable fractions of tungsten were deposited by using reactive biased target ion beam deposition technique. The influence of tungsten incorporation on the microstructure, surface topography, mechanical and tribological properties of the DLC were studied using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy. Atomic force microscope (AFM), transmission electron microscopy (TEM), nano-indentation and nano-scratch tests. The amount of W in films gets increases with increasing target bias voltage and most of the incorporated W reacts with carbon to form WC nanoclusters. Using TEM and FFT pattern, it was found that spherical shaped WC nanoclusters were uniformly dispersed in the DLC matrix and attains hexagonal (W2C) crystalline structure at higher W concentration. On the other hand, the incorporation of tungsten led to increase the formation of C-sp(2) hybridized bonding in DLC network and which is reflected in the hardness and elastic modulus of W-DLC films. Moreover, W-DLC films show very low friction coefficient and increased adhesion to the substrate than the DLC film, which could be closely related to its unique nanostructure of the W incorporated thin films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility of yeast, Saccharomyces cerevisiae, in the separation of quartz from hematite is demonstrated. Yeast cells; as well as their metabolites, functioned as flotation collectors, depressants or flocculants and dispersants for hematite and quartz. Interaction between yeast and the above minerals resulted in significant surface chemical changes, rendering quartz surfaces hydrophobic and hematite hydrophilic. Mineral-specific extracellular proteins and exopolysaccharides were secreted by yeast cells when grown in the presence of quartz and hematite, respectively. Quartz could be efficiently separated from hematite through microbially induced flotation and selective flocculation.