237 resultados para glass-ceramics
Resumo:
Lead-Carbon hybrid ultracapacitors (Pb-C HUCs) with flooded, absorbent-glass-mat (AGM) and silica-gel sulphuric acid electrolyte configurations are developed and performance tested. Pb-C HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area carbon with graphite-sheet substrate as negative electrodes. The electrode and silica-gel electrolyte materials are characterized by XRD, XPS, SEM, TEM, Rheometry, BET surface area, and FTIR spectroscopy in conjunction with electrochemistry. Electrochemical performance of SI-PbO2 and carbon electrodes is studied using cyclic voltammetry with constant-current charge and discharge techniques by assembling symmetric electrical-double-layer capacitors and hybrid Pb-C HUCs with a dynamic Pb(porous)/PbSO4 reference electrode. The specific capacitance values for 2 V Pb-C HUCs are found to be 166 F/g, 102 F/g and 152 F/g with a faradaic efficiency of 98%, 92% and 88% for flooded, AGM and gel configurations, respectively.
Resumo:
Transparent colorless glasses in the ternary BaOTiO2B2O3 system were fabricated via conventional melt-quenching technique. The glasses with certain molar concentrations of BaO and TiO2 on heat treatment at appropriate temperatures yielded nanocrystalline phase of TiO2 associated with the crystallite size in the 515 nm range. Nanocrystallized glasses exhibited high refractive index (n = 2.15) measured at lambda = 543 nm. These glasses were found to be hydrophobic in nature associated with the contact angle of 90 degrees. These high-index glass nanocrystal composites would be of potential interest for optical device applications.
Resumo:
This paper reports the fabrication and characterization of an ultrafast laser written Er-doped chalcogenide glass buried waveguide amplifier; Er-doped GeGaS glass has been synthesized by the vacuum sealed melt quenching technique. Waveguides have been fabricated inside the 4 mm long sample by direct ultrafast laser writing. The total passive fiber-to-fiber insertion loss is 2.58 +/- 0.02 dB at 1600 nm, including a propagation loss of 1.6 +/- 0.3 dB. Active characterization shows a relative gain of 2.524 +/- 0.002 dB/cm and 1.359 +/- 0.005 dB/cm at 1541 nm and 1550 nm respectively, for a pump power of 500 mW at a wavelength of 980 nm. (C) 2012 Optical Society of America
Resumo:
The existence of an indentation size effect (ISE) in the onset of yield in a Zr-based bulk metallic glass (BMG) is investigated by employing spherical-tip nanoindentation experiments. Statistically significant data on the load at which the first pop-in in the displacement occurs were obtained for three different tip radii and in two different structural states (as-cast and structurally relaxed) of the BMG. Hertzian contact mechanics were employed to convert the pop-in loads to the maximum shear stress underneath the indenter. Results establish the existence of an ISE in the BMG of both structural states, with shear yield stress increasing with decreasing tip radius. Structural relaxation was found to increase the yield stress and decrease the variability in the data, indicating ``structural homogenization'' with annealing. Statistical analysis of the data was employed to estimate the shear transformation zone (STZ) size. Results of this analysis indicate an STZ size of similar to 25 atoms, which increases to similar to 34 atoms upon annealing. These observations are discussed in terms of internal structure changes that occur during structural relaxation and their interaction with the stressed volumes in spherical indentation of a metallic glass. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Polycrystalline powders of Ba1-xCaxBi4Ti4O15 (where x = 0, 0.25, 0.50, 0.75 and 1) were prepared via the conventional solid-state reaction route. X-ray diffraction (XRD) and Raman scattering techniques have been employed to probe into the structural changes on changing x. XRD analyses confirmed the formation of monophasic bismuth layered structure of all the above compositions with an increase in orthorhombic distortion with increase in x. Raman spectra revealed a redshift in A(1g) peak and an increase in the B-2g/B-3g splitting with increasing Ca content. The average grain size was found to increase with increasing x. The temperature of the maximum dielectric constant (T-m) increased linearly with increasing Ca-content whereas the diffuseness of the phase transition was found to decrease with the end member CaBi4Ti4O15 showing a frequency independent sharp phase transition around 1048 K. Ca doping resulted in a decrease in the remnant polarization and an increase in the coercive field. Ba0.75Ca0.25Bi4Ti4O15 ceramics showed an enhanced piezoelectric coefficient d(33) of 15 pC N-1 at room temperature. Low values of dielectric losses and tunability of temperature coefficient of dielectric constant (tau(epsilon)) in the present solid-solution suggest that these compounds can be of potential use in microwave dielectrics at high temperatures. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective of this paper is to discuss the results of the ballistic testing of spark plasma sintered TiB2-Ti based functionally graded materials (FGMs) with an aim to assess their performance in defeating small-calibre armor piercing projectiles. We studied the efficacy of FGM design and compared its ballistic properties with those of TiB2-based composites as well as other competing ceramic armors. The ballistic properties are critically analyzed in terms of depth of penetration, ballistic efficiency, fractographs of fractured surfaces as well as quantification of the shattered ceramic fragments. It was found that all the investigated ceramic compositions exhibit ballistic efficiency (eta) of 5.1 -5.9. We also found that by increasing the thickness of FGM from 5 mm to 7.8 mm, the ballistic property of the composite degraded. Also, the strength of the ceramic compositions studied is sufficient to completely fracture the nose of the pointed projectile used. Analysis of the ceramic fragments (2 mu m-10 mm) showed that harder the ceramic, coarser were the fragments formed. On comparing the results with available armor systems, it has been concluded that TiB2 based composites can show better ballistic properties, except B4C. SEM analysis of the fragments obtained after testing with FGM showed formation of cleavage steps as well as presence of intergranular cracks, indicating that the FGM fractured by mixed mode of failure. It can be concluded that the FGM developed has lower ballistic properties compared to its monolith TiB2-20 wt.% Ti.
Resumo:
We report the variation of glass transition temperature in supported thin films of polymer nanocomposites, consisting of polymer grafted nanoparticles embedded in a homopolymer matrix. We observe a systematic variation of the estimated glass transition temperature T-g, with the volume fraction of added polymer grafted nanoparticles. We have correlated the observed T-g variation with the underlying morphological transitions of the nanoparticle dispersion in the films. Our data also suggest the possibility of formation of a low-mobility glass or gel-like layer of nanoparticles at the interface, which could play a significant role in determining T-g of the films provided. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4773442]
Resumo:
Nonlinear dielectric response of BaBi4Ti4O15 ceramics synthesized via the conventional solid-state reaction route has been monitored over a wide range of electric field strengths (E-0 = 0.5 - 5 kV/cm). Dielectric permittivity was found to increase linearly within the range of applied field. Rayleigh relations were employed to interpret the nonlinear dielectric response and the contribution of irreversible domain wall motion to the macroscopic permittivity was separated. The values of room temperature Rayleigh dielectric coefficient (alpha) and relative initial permittivity (epsilon'(init)) were found to be 2.28 +/- 0.02 cm/kV and 146.10 +/- 0.07, respectively. A reasonable agreement between the simulated and measured polarization-electric field (P-E) hysteresis loops was observed at an applied electric field of 5 kV/cm.
Comparison of ZnO films deposited on indium tin oxide and soda lime glass under identical conditions
Resumo:
ZnO films have been grown via a vapour phase transport (VPT) on soda lime glass (SLG) and indium-tin oxide (ITO) coated glass. ZnO film on ITO had traces of Zn and C which gives them a dark appearance while that appears yellowish-white on SLG. X-ray photoelectron spectroscopy studies confirm the traces of C in the form of C-O. The photoluminescence studies reveal a prominent green luminescence band for ZnO film on ITO. (C) 2013 Author(s).
Resumo:
Glasses in the x(BaO-TiO2)-B2O3 (x = 0.25, 0.5, 0.75, and 1 mol.) system were fabricated via the conventional melt-quenching technique. Thermal stability and glass-forming ability as determined by differential thermal analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (T-g). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units, which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units and their connectivity in the glasses.
Resumo:
In this work, we synthesized bulk amorphous GeGaS glass by conventional melt quenching technique. Amorphous nature of the glass is confirmed using X-ray diffraction. We fabricated the channel waveguides on this glass using the ultrafast laser inscription technique. The waveguides are written on this glass 100 mu m below the surface of the glass with a separation of 50 ae m by focusing the laser beam into the material using 0.67 NA lens. The laser parameters are set to 350 fs pulse duration at 100 KHz repetition rate. A range of writing energies with translation speeds 1 mm/s, 2 mm/s, 3 mm/s and 4 mm/s were investigated. After fabrication the waveguides facets were ground and polished to the optical quality to remove any tapering of the waveguide close to the edges. We characterized the loss measurement by butt coupling method and the mode field image of the waveguides has been captured to compare with the mode field image of fibers. Also we compared the asymmetry in the shape of the waveguide and its photo structural change using Raman spectra.
Resumo:
We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.
Resumo:
Waveguides were fabricated on GeGaSEr chalcogenide glass using ultrafast laser inscription method. The thermal diffusion model is discussed for understanding the light matter interaction and shown the effect of net-fluence in waveguide formation on chalcogenide glass. (C) 2012 Optical Society of America
Resumo:
Alternating Differential Scanning Calorimetric (ADSC) studies on quaternary Ge15Te80-xIn5Agx glasses show the non-reversing enthalpy (Delta H-NR) at T-g to exhibit a broad global minimum in the 8% <= x <= 16% range of Ag, an observation that is taken evidence for existence of an Intermediate Phase (IP) in that range. Glasses at x < 8% are in the flexible phase while those at x > 16% in the stressed-rigid phase. The nature of crystalline phases formed upon crystallization of bulk glasses are elucidated by XRD studies, and reveal presence of Te, GeTe, Ag8GeTe6, AgTe, In2Te3 and In4Te3 phases. These experiments also reveal that the fraction of Ag- bearing phases increases while those of Te- bearing ones decreases with increasing x, suggesting progressive replacement of Te-Te bonds by Ag-Te bonds. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Boron oxide (B2O3) addition to pre-reacted K0.5Na0.5NbO3 (KNN) powders facilitated swift densification at relatively low sintering temperatures which was believed to be a key to minimize potassium and sodium loss. The base KNN powder was synthesized via solid-state reaction route. The different amounts (0.1-1 wt%) of B2O3 were-added, and ceramics were sintered at different temperatures and durations to optimize the amount of B2O3 needed to obtain KNN pellets with highest possible density and grain size. The 0.1 wt% B2O3-added KNN ceramics sintered at 1,100 A degrees C for 1 h exhibited higher density (97 %). Scanning electron microscopy studies confirmed an increase in average grain size with increasing B2O3 content at appropriate temperature of sintering and duration. The B2O3-added KNN ceramics exhibited improved dielectric and piezoelectric properties at room temperature. For instance, 0.1 wt% B2O3-added KNN ceramic exhibited d (33) value of 116 pC/N which is much higher than that of pure KNN ceramics. Interestingly, all the B2O3-added (0.1-1 wt%) KNN ceramics exhibited polarization-electric field (P vs. E) hysteresis loops at room temperature. The remnant polarization (P (r)) and coercive field (E (c)) values are dependent on the B2O3 content and crystallite size.