207 resultados para dense nuclear matter
Resumo:
The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.
Resumo:
Visual search in real life involves complex displays with a target among multiple types of distracters, but in the laboratory, it is often tested using simple displays with identical distracters. Can complex search be understood in terms of simple searches? This link may not be straightforward if complex search has emergent properties. One such property is linear separability, whereby search is hard when a target cannot be separated from its distracters using a single linear boundary. However, evidence in favor of linear separability is based on testing stimulus configurations in an external parametric space that need not be related to their true perceptual representation. We therefore set out to assess whether linear separability influences complex search at all. Our null hypothesis was that complex search performance depends only on classical factors such as target-distracter similarity and distracter homogeneity, which we measured using simple searches. Across three experiments involving a variety of artificial and natural objects, differences between linearly separable and nonseparable searches were explained using target-distracter similarity and distracter heterogeneity. Further, simple searches accurately predicted complex search regardless of linear separability (r = 0.91). Our results show that complex search is explained by simple search, refuting the widely held belief that linear separability influences visual search.
Resumo:
Light neutralino dark matter can be achieved in the Minimal Supersymmetric Standard Model if staus are rather light, with mass around 100 GeV. We perform a detailed analysis of the relevant supersymmetric parameter space, including also the possibility of light selectons and smuons, and of light higgsino- or wino-like charginos. In addition to the latest limits from direct and indirect detection of dark matter, ATLAS and CMS constraints on electroweak-inos and on sleptons are taken into account using a ``simplified models'' framework. Measurements of the properties of the Higgs boson at 125 GeV, which constrain amongst others the invisible decay of the Higgs boson into a pair of neutralinos, are also implemented in the analysis. We show that viable neutralino dark matter can be achieved for masses as low as 15 GeV. In this case, light charginos close to the LEP bound are required in addition to light right-chiral staus. Significant deviations are observed in the couplings of the 125 GeV Higgs boson. These constitute a promising way to probe the light neutralino dark matter scenario in the next run of the LHC. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Ultra-fine crystallites of Mn1-xZnxFe2O4 series (0 <= x <= 1) were synthesized through wet chemical co- precipitation method followed by calcination at 200 degrees C for 4 hours. Formation of ferrites was confirmed by X-ray diffraction, TEM selected area diffraction (SAD) and Fourier Transform Infra-red Spectroscopy (FTIR). Nanocrystallites of different compositions in the series were coated with biocompatible chitosan in order to investigate their possible application as contrast agent for magnetic resonance imaging (MRI). Chitosan coating examined by FTIR, revealed a strong bonding of chitosan molecules to the surface of the ferrite nanocrystallites. Spin-spin, tau(2) relaxivities of nuclear spins of hydrogen protons of the solutions for different ferrites were measured from concentration dependence of relaxation time by nuclear magnetic resonance (NMR). All the compositions of Mn1-xZnxFe2O4 series possess higher values of tau(2) relaxivity thus making them suitable as contrast agents for tau(2) weighted imaging by MRI.
Resumo:
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.
Resumo:
The low-surface-brightness galaxies are gas rich and yet have a low star formation rate; this is a well-known puzzle. The spiral features in these galaxies are weak and difficult to trace, although this aspect has not been studied much. These galaxies are known to be dominated by the dark matter halo from the innermost regions. Here, we do a stability analysis for the galactic disc of UGC 7321, a low-surface-brightness, superthin galaxy, for which the various observational input parameters are available. We show that the disc is stable against local, linear axisymmetric and non-axisymmetric perturbations. The Toomre Q parameter values are found to be large (>> 1) mainly due to the low disc surface density, and the high rotation velocity resulting due to the dominant dark matter halo, which could explain the observed low star formation rate. For the stars-alone case, the disc shows finite swing amplification but the addition of dark matter halo suppresses that amplification almost completely. Even the inclusion of the low-dispersion gas which constitutes a high disc mass fraction does not help in causing swing amplification. This can explain why these galaxies do not show strong spiral features. Thus, the dynamical effect of a halo that is dominant from inner regions can naturally explain why star formation and spiral features are largely suppressed in low-surface-brightness galaxies, making these different from the high-surface-brightness galaxies.
Resumo:
In this paper we establish that the Lovasz theta function on a graph can be restated as a kernel learning problem. We introduce the notion of SVM-theta graphs, on which Lovasz theta function can be approximated well by a Support vector machine (SVM). We show that Erdos-Renyi random G(n, p) graphs are SVM-theta graphs for log(4)n/n <= p < 1. Even if we embed a large clique of size Theta(root np/1-p) in a G(n, p) graph the resultant graph still remains a SVM-theta graph. This immediately suggests an SVM based algorithm for recovering a large planted clique in random graphs. Associated with the theta function is the notion of orthogonal labellings. We introduce common orthogonal labellings which extends the idea of orthogonal labellings to multiple graphs. This allows us to propose a Multiple Kernel learning (MKL) based solution which is capable of identifying a large common dense subgraph in multiple graphs. Both in the planted clique case and common subgraph detection problem the proposed solutions beat the state of the art by an order of magnitude.
Resumo:
Nuclear pore complexes (NPCs) are very selective filters that sit on the membrane of the nucleus and monitor the transport between the cytoplasm and the nucleoplasm. For the central plug of NPC two models have been suggested in the literature. The first suggests that the plug is a reversible hydrogel while the other suggests that it is a polymer brush. Here we propose a model for the transport of a protein through the plug, which is general enough to cover both the models. The protein stretches the plug and creates a local deformation, which together with the protein, we refer to as the bubble. We start with the free energy for creation of the bubble and consider its motion within the plug. The relevant coordinate is the center of the bubble which executes random walk. We find that for faster relaxation of the gel, the diffusion of the bubble is greater. (C) 2014 Elsevier-B.V. All rights reserved.
Resumo:
Bentonite clay is identified as potential buffer in deep geological repositories (DGR) that store high level radioactive wastes (HLW) as the expansive clay satisfies the expected mechanical and physicochemical functions of the buffer material. In the deep geological disposal of HLW, iodine-129 is one of the significant nuclides, attributable to its long half-life (half life 1⁄4 1:7 × 107 years). However, the negative charge on the basal surface of bentonite particles precludes retention of iodide anions. To render the bentonite effective in retaining hazardous iodide species in DGR, improvement of the anion retention capacity of bentonite becomes imperative. The iodide retention capac-ity of bentonite is improved by admixing 10 and 20% Ag-kaolinite (Ag-K) with bentonite (B) on a dry mass basis. The present study produced Ag-kaolinite by heating silver nitrate-kaolinite mixes at 400°C. Marginal release of iodide retained by Ag-kaolinite occurred under extreme acidic (pH 1⁄4 2:5) and alkaline (pH 1⁄4 12:5) conditions. The swell pressure and iodide etention results of the B-Ag-K specimens bring out that mixing Ag-K with bentonite does not chemically modify the expansive clay; the mixing is physical in nature and Ag-K presence only contributes to iodide retention of the admixture. DOI: 10.1061/(ASCE)HZ.2153-5515.0000121. © 2012 American Society of Civil Engineers.
Resumo:
This work considers how the properties of hydrogen bonded complexes, X-H center dot center dot center dot Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H center dot center dot center dot O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4-3.0 angstrom, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends. (C) 2014 AIP Publishing LLC.
Resumo:
Single crystal X-ray structural analysis of a septanoside, namely, n-pentyl-2-chloro-2-deoxy sept-3-uloside (1) provides many finer details of the molecular structure, in addition to its preferred twist-chair conformation, namely, (TC3,4)-T-5,6 conformation. Structural analysis reveals a dense network of O-H...O, C-H...O and van der Waals interactions that stabilize interdigitized, planar bi-layer structure of the crystal lattice. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Simplified equations are derived for a granular flow in the `dense' limit where the volume fraction is close to that for dynamical arrest, and the `shallow' limit where the stream-wise length for flow development (L) is large compared with the cross-stream height (h). The mass and diameter of the particles are set equal to 1 in the analysis without loss of generality. In the dense limit, the equations are simplified by taking advantage of the power-law divergence of the pair distribution function chi proportional to (phi(ad) - phi)(-alpha), and a faster divergence of the derivativ rho(d chi/d rho) similar to (d chi/d phi), where rho and phi are the density and volume fraction, and phi(ad) is the volume fraction for arrested dynamics. When the height h is much larger than the conduction length, the energy equation reduces to an algebraic balance between the rates of production and dissipation of energy, and the stress is proportional to the square of the strain rate (Bagnold law). In the shallow limit, the stress reduces to a simplified Bagnold stress, where all components of the stress are proportional to (partial derivative u(x)/partial derivative y)(2), which is the cross-stream (y) derivative of the stream-wise (x) velocity. In the simplified equations for dense shallow flows, the inertial terms are neglected in the y momentum equation in the shallow limit because the are O(h/L) smaller than the divergence of the stress. The resulting model contains two equations, a mass conservation equations which reduces to a solenoidal condition on the velocity in the incompressible limit, and a stream-wise momentum equation which contains just one parameter B which is a combination of the Bagnold coefficients and their derivatives with respect to volume fraction. The leading-order dense shallow flow equations, as well as the first correction due to density variations, are analysed for two representative flows. The first is the development from a plug flow to a fully developed Bagnold profile for the flow down an inclined plane. The analysis shows that the flow development length is ((rho) over barh(3)/B) , where (rho) over bar is the mean density, and this length is numerically estimated from previous simulation results. The second example is the development of the boundary layer at the base of the flow when a plug flow (with a slip condition at the base) encounters a rough base, in the limit where the momentum boundary layer thickness is small compared with the flow height. Analytical solutions can be found only when the stream-wise velocity far from the surface varies as x(F), where x is the stream-wise distance from the start of the rough base and F is an exponent. The boundary layer thickness increases as (l(2)x)(1/3) for all values of F, where the length scale l = root 2B/(rho) over bar. The analysis reveals important differences between granular flows and the flows of Newtonian fluids. The Reynolds number (ratio of inertial and viscous terms) turns out to depend only on the layer height and Bagnold coefficients, and is independent of the flow velocity, because both the inertial terms in the conservation equations and the divergence of the stress depend on the square of the velocity/velocity gradients. The compressibility number (ratio of the variation in volume fraction and mean volume fraction) is independent of the flow velocity and layer height, and depends only on the volume fraction and Bagnold coefficients.
Resumo:
The self-organized motion of vast numbers of creatures in a single direction is a spectacular example of emergent order. Here, we recreate this phenomenon using actuated nonliving components. We report here that millimetre-sized tapered rods, rendered motile by contact with an underlying vibrated surface and interacting through a medium of spherical beads, undergo a phase transition to a state of spontaneous alignment of velocities and orientations above a threshold bead area fraction. Guided by a detailed simulation model, we construct an analytical theory of this flocking transition, with two ingredients: a moving rod drags beads; neighbouring rods reorient in the resulting flow like a weathercock in the wind. Theory and experiment agree on the structure of our phase diagram in the plane of rod and bead concentrations and power-law spatial correlations near the phase boundary. Our discovery suggests possible new mechanisms for the collective transport of particulate or cellular matter.
Resumo:
Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-alpha-N-trifluoroacetylgalactosamine (Me alpha NTFAGalN) and methyl-beta-tifluoroacetylgalactosamine (Me beta NTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and Me beta NTFAGalN, and 0.01-ppm chemical shift change for Me alpha NTFAGalN, demonstrate that the Me alpha NTFAGalN has a sufficiently long residence time on the protein binding site as compared to Me beta NTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of alpha and beta anomers of NTFAGalN and Me alpha NTFAGalN is controlled enthalpically, while that of Me beta NTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the Me beta NTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.